Skip to main content
Log in

Kinetic and Thermodynamic Studies of Chlorinated Organic Compound Degradation by Siderite-Activated Peroxide and Persulfate

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The efficacy of two oxidant systems, iron-activated hydrogen peroxide (H2O2) and iron-activated hydrogen peroxide coupled with persulfate (S2O8 2−), was investigated for treatment of two chlorinated organic compounds, trichloroethene (TCE) and 1,2-dichloroethane (DCA). Batch tests were conducted at multiple temperatures (10–50 °C) to investigate degradation kinetics and reaction thermodynamics. The influence of an inorganic salt, dihydrogen phosphate ion (H2PO4 ), on oxidative degradation was also examined. The degradation of TCE was promoted in both systems, with greater degradation observed for higher temperatures. The inhibition effect of H2PO4 on the degradation of TCE increased with increasing temperature for the iron-activated H2O2 system but decreased for the iron-activated hydrogen peroxide-persulfate system. DCA degradation was limited in the iron-activated hydrogen peroxide system. Conversely, significant DCA degradation (87% in 48 h at 20 °C) occurred in the iron-activated hydrogen peroxide-persulfate system, indicating the crucial role of sulfate radical (SO4 ∙) from persulfate on the oxidative degradation of DCA. The activation energy values varied from 37.7 to 72.9 kJ/mol, depending on the different reactants. Overall, the binary hydrogen peroxide-persulfate oxidant system exhibited better performance than hydrogen peroxide alone for TCE and DCA degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

SO:

Siderite-catalyzed hydrogen peroxide oxidant

STO:

Siderite-catalyzed binary oxidants (hydrogen peroxide and persulfate)

References

  • Ahuja, D. K., Bachas, L. G., & Bhattacharyya, D. (2007). Modified fenton reaction for trichlorophenol dechlorination by enzymatically generated H2O2 and gluconic acid chelate. Chemosphere, 66(11), 2193–2200.

    Article  CAS  Google Scholar 

  • Block, P. A., Brown, R. A., & Robinson, D. (2004). Novel activation technologies for sodium persulfate in situ chemical oxidation. In Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Monterey, CA.

  • Brusseau, M., Carroll, K. C., Allen, T., Baker, J., DiGuiseppi, W., Hatton, J., Morrison, C., Russo, A., & Berkompas, J. (2011). Impact of in situ chemical oxidation on contaminant mass discharge: linking source-zone and plume-scale characterizations of remediation performance. Environmental Science & Technology, 45(12), 5352–5358.

    Article  CAS  Google Scholar 

  • Chawla, O. P., & Fessenden, R. W. (1975). Electron spin resonance and pulse radiolysis studies of some reactions of peroxysulfate (SO4·-1,2). The Journal of Physical Chemistry, 79(24), 2693–2700.

    Article  CAS  Google Scholar 

  • Chen, G. E., Hoag, G. E., Chedda, P., Nadim, F., Woody, B. A., & Dobbs, G. M. (2001). The mechanism and applicability of in situ oxidation of trichloroethylene with Fenton’s reagent. Journal of Hazardous Materials, 87(1), 171–186.

    Article  CAS  Google Scholar 

  • Ciotti, C., Baciocchi, R., & Tuhkanen, T. (2009). Influence of the operating conditions on highly oxidative radicals generation in Fenton’s systems. Journal of Hazardous Materials, 161(1), 402–408.

    Article  CAS  Google Scholar 

  • De Laat, J., & Le, T. G. (2005). Kinetics and modeling of the Fe (III)/H2O2 system in the presence of sulfate in acidic aqueous solutions. Environmental Science & Technology, 39(6), 1811–1818.

    Article  Google Scholar 

  • De Laat, J., & Le, T. G. (2006). Effects of chloride ions on the iron (III)-catalyzed decomposition of hydrogen peroxide and on the efficiency of the Fenton-like oxidation process. Applied Catalysis B: Environmental, 66(1), 137–146.

    Article  Google Scholar 

  • Deng, D., Peng, L., Guan, M., & Kang, Y. (2014). Impact of activation methods on persulfate oxidation of methyl tert-butyl ether. Journal of Hazardous Materials, 264, 521–528.

    Article  CAS  Google Scholar 

  • Fang, G., Gao, J., Dionysiou, D. D., Liu, C., & Zhou, D. (2013). Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs. Environmental Science & Technology, 47(9), 4605–4611.

    Article  CAS  Google Scholar 

  • Furman, O. S., Teel, A. L., & Watts, R. J. (2010). Mechanism of base activation of persulfate. Environmental Science & Technology, 44(16), 6423–6428.

    Article  CAS  Google Scholar 

  • Hayon, E., Treinin, A., & Wilf, J. (1972). Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO2 , SO3 , SO4 , and SO5 radicals. Journal of the American Chemical Society, 94(1), 47–57.

    Article  CAS  Google Scholar 

  • Huang, W., Liu, F., Yan, N., Lu, A., Chen, H., Chen, L., & Wang, F. (2013). Removal of trichloroethylene in groundwater with two oxidants: siderite catalyzed hydrogen peroxide and sodium persulfate. Water Science and Technology: Water Supply, 13, 36–43.

    CAS  Google Scholar 

  • Innocenti, I., Verginelli, I., Massetti, F., Piscitelli, D., Gavasci, R., & Baciocchi, R. (2014). Pilot-scale ISCO treatment of a MtBE contaminated site using a Fenton-like process. Science of the Total Environment, 485, 726–738.

    Article  Google Scholar 

  • Ko, S., Crimi, M., Marvin, B. K., Holmes, V., & Huling, S. G. (2012). Comparative study on oxidative treatments of NAPL containing chlorinated ethanes and ethenes using hydrogen peroxide and persulfate in soils. Journal of Environmental Management, 108, 42–48.

    Article  CAS  Google Scholar 

  • Lal, M., Schöneich, C., Mönig, J., & Asmus, K.-D. (1988). Rate constants for the reactions of halogenated organic radicals. International Journal of Radiation Biology, 54(5), 773–785.

    Article  CAS  Google Scholar 

  • Liu, H., Bruton, T. A., Doyle, F. M., & Sedlak, D. L. (2014). In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials. Environmental Science & Technology, 48(17), 10330–10336.

    Article  CAS  Google Scholar 

  • McKenzie, E. R., Siegrist, R. L., McCray, J. E., & Higgins, C. P. (2015). Effects of chemical oxidants on perfluoroalkyl acid transport in one-dimensional porous media columns. Environmental Science & Technology, 49, 1681–1689.

    Article  CAS  Google Scholar 

  • Miller, C. J., Rose, A. L., & Waite, T. D. (2012). Hydroxyl radical production by H2O2-mediated oxidation of Fe (II) complexed by suwannee river fulvic acid under circumneutral freshwater conditions. Environmental Science & Technology, 47(2), 829–835.

    Article  Google Scholar 

  • Minakata, D., Li, K., Westerhoff, P., & Crittenden, J. (2009). Development of a group contribution method to predict aqueous phase hydroxyl radical (HO•) reaction rate constants. Environmental Science & Technology, 43(16), 6220–6227.

    Article  CAS  Google Scholar 

  • Moran, M. J., Zogorski, J. S., & Squillace, P. J. (2007). Chlorinated solvents in groundwater of the United States. Environmental Science and Technology, 41(1), 74–81.

    Article  CAS  Google Scholar 

  • Pham, H., Boon, N., Marzorati, M., & Verstraete, W. (2009). Enhanced removal of 1,2-dichloroethane by anodophilic microbial consortia. Water Research, 43(11), 2936–2946.

    Article  CAS  Google Scholar 

  • Randazzo, S., Scialdone, O., Brillas, E., & Sirés, I. (2011). Comparative electrochemical treatments of two chlorinated aliphatic hydrocarbons. Time course of the main reaction by-products. Journal of Hazardous Materials, 192(3), 1555–1564.

    Article  CAS  Google Scholar 

  • Ratanatamskul, C., Chintitanun, S., Masomboon, N., & Lu, M. C. (2010). Inhibitory effect of inorganic ions on nitrobenzene oxidation by fluidized-bed Fenton process. Journal of Molecular Catalysis A: Chemical, 3341(1–2), 101–105.

    Article  Google Scholar 

  • Riga, A., Soutsas, K., Ntampegliotis, K., Karayannis, V., & Papapolymerou, G. (2007). Effect of system parameters and of inorganic salts on the decolorization and degradation of Procion H-exl dyes. Comparison of H2O2/UV, Fenton, UV/Fenton, TiO2/UV and TiO2/UV/H2O2 processes. Desalination, 211, 72–86.

    Article  CAS  Google Scholar 

  • Rokhina, E. V., Golovina, E. A., As, H., & Virkutyte, J. (2009). ESR ST study of hydroxyl radical generation in wet peroxide system catalyzed by heterogeneous ruthenium. Chemosphere, 77(1), 148–150.

    Article  CAS  Google Scholar 

  • Salman, M., Gerhard, J. I., Major, D. W., Pironi, P., & Hadden, R. (2015). Remediation of trichloroethylene-contaminated soils by star technology using vegetable oil smoldering. Journal of Hazardous Materials, 285, 346–355.

    Article  CAS  Google Scholar 

  • Siegrist, R. L., Urynowicz, M. A., West, O. R., Crimi, M. L., & Lowe, K. S. (2001). Principles and practices of in situ chemical oxidation using permanganate. Recherche. Columbus: Battelle Press.

    Google Scholar 

  • Watts, R. J., & Teel, A. L. (2006). Treatment of contaminated soils and groundwater using ISCO. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 10, 2–9.

    Article  CAS  Google Scholar 

  • Watts, R. J., Udell, M. D., Rauch, P. A., & Leung, S. W. (1990). Treatment of pentachlorophenol-contaminated soils using Fenton’s reagent. Hazardous Waste and Hazardous Materials, 7(4), 335–345.

    Article  CAS  Google Scholar 

  • Yan, N., Liu, F., & Huang, W. (2013). Interaction of oxidants in siderite catalyzed hydrogen peroxide and persulfate system using trichloroethylene as a target contaminant. Chemical Engineering Journal, 219, 149–154.

    Article  CAS  Google Scholar 

  • Yan, N., Liu, F., Xue, Q., Brusseau, M. L., Liu, Y., & Wang, J. (2015). Degradation of trichloroethene by siderite-catalyzed hydrogen peroxide and persulfate: Investigation of reaction mechanisms and degradation products. Chemical Engineering Journal, 274, 61–68.

    Article  CAS  Google Scholar 

  • Yan, N., Liu, F., Chen, Y., & Brusseau, M. L. (2016). Influence of groundwater constituents on 1,4-dioxane degradation by a binary oxidant system. Water, air, & soil pollution, 227(12), 436.

    Article  Google Scholar 

  • Yuan, S., Mao, X., & Alshawabkeh, A. N. (2012). Efficient degradation of TCE in groundwater using Pd and electro-generated H2 and O2: a shift in pathway from hydrodechlorination to oxidation in the presence of ferrous ions. Environmental Science & Technology, 46(6), 3398–3405.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2017YFC0406104), the National Natural Science Foundation of China (NSFC) (40972162), the project from the Beijing Higher Education Young Elite Teacher Project (granted to X.Y. Guan), the National Institute of Environmental Health Sciences Superfund Research Program (P42 ES04940), and the Strategic Environmental Research and Development Program (ER-2302). The first author acknowledges financial support from the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Liu.

Electronic supplementary material

ESM 1

(PDF 404 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, N., Li, M., Liu, Y. et al. Kinetic and Thermodynamic Studies of Chlorinated Organic Compound Degradation by Siderite-Activated Peroxide and Persulfate. Water Air Soil Pollut 228, 453 (2017). https://doi.org/10.1007/s11270-017-3631-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3631-y

Keywords