Skip to main content

Advertisement

Log in

Bacterial Community Composition and Genes for Herbicide Degradation in a Stormwater Wetland Collecting Herbicide Runoff

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Stormwater wetlands collect and attenuate runoff-related herbicides, limiting their transport into aquatic ecosystems. Knowledge on wetland bacterial communities with respect to herbicide dissipation is scarce. Previous studies showed that hydrological and hydrochemical conditions, including pesticide removal capacity, may change from spring to summer in stormwater wetlands. We hypothesized that these changes alter bacterial communities, which, in turn, influence pesticide degradation capacities in stormwater wetland. Here, we report on bacterial community changes in a stormwater wetland exposed to pesticide runoff, and the occurrence of trz, atz, puh, and phn genes potentially involved in the biodegradation of simazine, diuron, and glyphosate. Based on T-RFLP analysis of amplified 16S rRNA genes, a response of bacterial communities to pesticide exposure was not detected. Changes in stormwater wetland bacterial community mainly followed seasonal variations in the wetland. Hydrological and hydrochemical fluctuations and vegetation development in the wetland presumably contributed to prevent detection of effects of pesticide exposure on overall bacterial community. End point PCR assays for trz, atz, phn, and puh genes associated with herbicide degradation were positive for several environmental samples, which suggest that microbial degradation contributes to pesticide dissipation. However, a correlation of corresponding genes with herbicide concentrations could not be detected. Overall, this study represents a first step to identify changes in bacterial community associated with the presence of pesticides and their degradation in stormwater wetland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adrados, B., Sánchez, O., Arias, C. A., Becares, E., Garrido, L., Mas, J., Brix, H., & Morató, J. (2014). Microbial communities from different types of natural wastewater treatment systems: vertical and horizontal flow constructed wetlands and biofilters. Water Research, 55(May), 304–312.

    Article  CAS  Google Scholar 

  • Becker, R. M., Chambers, J. M., & Wilks, A. R. (1988). The new S language data analysis: a programming environment for data analysis and graphics. The Wadsworth & Brooks / Cole Statistics / Probability Series. Pacific Grove: Wadsworth & Brooks / Cole.

    Google Scholar 

  • Blanck, H., Wängberg, S.-Å., & Molander, S. (1988). Pollution-induced community tolerance—a new ecotoxicological tool. In J. Cairns & J. Pratt (Eds.), 219-219–12 Functional testing of aquatic biota for estimating hazards of chemicals. West Conshohocken: ASTM International.

    Google Scholar 

  • Budd, R., O’Geen, A., Goh, K. S., Bondarenko, S., & Gan, J. (2011). Removal mechanisms and fate of insecticides in constructed wetlands. Chemosphere, 83(11), 1581–1587.

    Article  CAS  Google Scholar 

  • Devers, M., Soulas, G., & Martin-Laurent, F. (2004). Real-time reverse transcription PCR analysis of expression of atrazine catabolism genes in two bacterial strains isolated from soil. Journal of Microbiological Methods, 56(1), 3–15.

    Article  CAS  Google Scholar 

  • Edwards, U., Rogall, T., Blöcker, H., Emde, M., & Böttger, E. C. (1989). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Research, 17(19), 7843–7853.

    Article  CAS  Google Scholar 

  • Gregoire, C., Elsaesser, D., Huguenot, D., Lange, J., Lebeau, T., Merli, A., Mose, R., et al. (2009). Mitigation of agricultural nonpoint-source pesticide pollution in artificial wetland ecosystems. Environmental Chemistry Letters, 7(3), 205–231.

    Article  CAS  Google Scholar 

  • Gregoire, C., Payraudeau, S., & Domange, N. (2010). Use and fate of 17 pesticides applied on a vineyard catchment. International Journal of Environmental Analytical Chemistry, 90(3–6), 406–420.

    Article  CAS  Google Scholar 

  • Imfeld, G., & Vuilleumier, S. (2012). Measuring the effects of pesticides on bacterial communities in soil: a critical review. European Journal of Soil Biology, 49(March), 22–30.

    Article  CAS  Google Scholar 

  • Imfeld, G., Braeckevelt, M., Kuschk, P., & Richnow, H. H. (2009). Monitoring and assessing processes of organic chemicals removal in constructed wetlands. Chemosphere, 74(3), 349–362.

    Article  CAS  Google Scholar 

  • Imfeld, G., Lefrancq, M., Maillard, E., & Payraudeau, S. (2013). Transport and attenuation of dissolved glyphosate and AMPA in a stormwater wetland. Chemosphere, 90(4), 1333–1339.

    Article  CAS  Google Scholar 

  • Keefe, S. H., Daniels, J. S. T., Runkel, R. L., Wass, R. D., Stiles, E. A., & Barber, L. B. (2010). Influence of hummocks and emergent vegetation on hydraulic performance in a surface flow wastewater treatment wetland. Water Resources Research, 46(11), 11518.

    Article  Google Scholar 

  • Khurana, J. L., Jackson, C. J., Scott, C., Pandey, G., Horne, I., Russell, R. J., Herlt, A., Easton, C. J., & Oakeshott, J. G. (2009). Characterization of the phenylurea hydrolases a and B: founding members of a novel amidohydrolase subgroup. Biochemical Journal, 418(2), 431–441.

    Article  CAS  Google Scholar 

  • Maillard, E., & Imfeld, G. (2014). Pesticide mass budget in a stormwater wetland. Environmental Science & Technology, 48(15), 8603–8611.

    Article  CAS  Google Scholar 

  • Maillard, E., Payraudeau, S., Faivre, E., Grégoire, C., Gangloff, S., & Imfeld, G. (2011). Removal of pesticide mixtures in a stormwater wetland collecting runoff from a vineyard catchment. Science of the Total Environment, 409(11), 2317–2324.

    Article  CAS  Google Scholar 

  • Meng, P., Pei, H., Hu, W., Shao, Y., & Li, Z. (2014). How to increase microbial degradation in constructed wetlands: influencing factors and improvement measures. Bioresource Technology, 157(April), 316–326.

    Article  CAS  Google Scholar 

  • Monard, C., Martin-Laurent, F., Devers-Lamrani, M., Lima, O., Vandenkoornhuyse, P., & Binet, F. (2010). Atz gene expressions during atrazine degradation in the soil drilosphere. Molecular Ecology, 19(4), 749–759.

    Article  CAS  Google Scholar 

  • Muyzer, G. (1999). DGGE/TGGE a method for identifying genes from natural ecosystems. Current Opinion in Microbiology, 2(3), 317–322.

    Article  CAS  Google Scholar 

  • Oliver, D. P., Kookana, R. S., Anderson, J. S., Cox, J., Waller, N., & Smith, L. (2012). The off-site transport of pesticide loads from two land uses in relation to hydrological events in the Mt. Lofty Ranges, South Australia. Agricultural Water Management, 106(April), 70–77.

    Article  Google Scholar 

  • Parker, G. F., Higgins, T. P., Hawkes, T., & Robson, R. L. (1999). Rhizobium (Sinorhizobium) meliloti Phn genes: characterization and identification of their protein products. Journal of Bacteriology, 181(2), 389–395.

    CAS  Google Scholar 

  • Penny, C., Nadalig, T., Alioua, M., Gruffaz, C., Vuilleumier, S., & Bringel, F. (2010). Coupling of denaturing high-performance liquid chromatography and terminal restriction fragment length polymorphism with precise fragment sizing for microbial community profiling and characterization. Applied and Environmental Microbiology, 76(3), 648–651.

    Article  CAS  Google Scholar 

  • Perito, B., & Mastromei, G. (2011). Molecular basis of bacterial calcium carbonate precipitation. In W. E. G. Müller (Ed.), Molecular biomineralization (Vol. 52, pp. 113–139). Berlin: Springer Berlin Heidelberg.

    Chapter  Google Scholar 

  • Rabiet, M., Margoum, C., Gouy, V., Carluer, N., & Coquery, M. (2010). Assessing pesticide concentrations and fluxes in the stream of a small vineyard catchment—effect of sampling frequency. Environmental Pollution, 158(3), 737–748.

    Article  CAS  Google Scholar 

  • Satsuma, K. (2009). Complete biodegradation of atrazine by a microbial community isolated from a naturally derived river ecosystem (microcosm). Chemosphere, 77(4), 590–596.

    Article  CAS  Google Scholar 

  • Schütte, U. M. E., Abdo, Z., Bent, S. J., Shyu, C., Williams, C. J., Pierson, J. D., & Forney, L. J. (2008). Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Applied Microbiology and Biotechnology, 80(3), 365–380.

    Article  Google Scholar 

  • Sura, S., Waiser, M., Tumber, V., Lawrence, J. R., Cessna, A. J., & Glozier, N. (2012). Effects of glyphosate and two herbicide mixtures on microbial communities in prairie wetland ecosystems: a mesocosm approach. Journal of Environment Quality, 41(3), 732.

    Article  CAS  Google Scholar 

  • Udiković-Kolić, N., Devers-Lamrani, M., Petrić, I., Hršak, D., & Martin-Laurent, F. (2011). Evidence for taxonomic and functional drift of an atrazine-degrading culture in response to high atrazine input. Applied Microbiology and Biotechnology, 90(4), 1547–1554.

    Article  Google Scholar 

  • Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244.

    Article  Google Scholar 

  • Zumft, W. G. (1997). Cell biology and molecular basis of denitrification. Microbiology and Molecular Biology Reviews, 61(4), 533–616.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Fabrice Martin-Laurent for providing reference plasmids with herbicide degradation genes.

Funding

This research has been funded by the Research Program EC2CO (CNRS-INSU) VitiFLUX and by the PhytoRET project (C.21) of the European INTERREG IV program Upper Rhine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwenaël Imfeld.

Electronic supplementary material

ESM 1

Matrix of peaks intensities obtained for each sample after T-RFLP analysis. (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mauffrey, F., Baccara, PY., Gruffaz, C. et al. Bacterial Community Composition and Genes for Herbicide Degradation in a Stormwater Wetland Collecting Herbicide Runoff. Water Air Soil Pollut 228, 452 (2017). https://doi.org/10.1007/s11270-017-3625-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3625-9

Keywords

Navigation