Use of Diatom Communities as Indicators of Conductivity and Ionic Composition in a Small Austral Temperate River System

Abstract

The aim of this study was to determine if benthic diatoms can be used as effective and reliable indicators of ionic composition and conductivity in different stream order categories. Samples were collected on two occasions from 22 sampling sites within the Bloukrans River system, Eastern Cape Province, South Africa. The data collected were subjected to multivariate statistical technique, i.e. CCA, to determine environmental gradients along which the diatom species were distributed as well as to elucidate hypothesised differences in community structure per stream order. Significant differences between the two sampling periods were observed in dissolved oxygen, temperature, Na, B, Ca, Zn, Cu, Cr, K, Fe, phosphate, conductivity, salinity and nitrate, while significant stream order variation was observed for conductivity, salinity, Mg, Ca and sediment nitrates. Study sites were grouped into two broad categories (stream order 1 and 2/3 sites) based on CCA. As pollution increased, low to moderate pollution-tolerant species such as Fragilaria tenera, Cyclostephanos dubius and Gyrosigma acuminatum were replaced by high pollution-tolerant species such as Nitzschia palea, Gomphonema parvulum, Tryblionella apiculata, Diploneis vulgaris and Staurosira elliptica. This shows that diatom assemblages are appropriate indicators of ionic composition/conductivity and hydromorphological characteristics (e.g. stream size) of running waters. The results highlight the importance of creating regional calibration datasets which will make it possible to develop procedures to determine conductivity and ion concentration effects on biota.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Agriculture Laboratory Association of Southern Africa (AgriLASA). (2004). Soil handbook. Pretoria: Agriculture Laboratory Association of Southern Africa.

    Google Scholar 

  2. Anderson, M.J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26, 32–46.

  3. Anderson, M. J., Gorley, R. N. & Clarke, K. R. (2008). PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth, UK.

  4. Anderson, M. J. & ter Braak C. J. F. (2003). Permutation tests for multi-factorial analysis of variance. Journal of Statistical and Computational Simulation, 73, 85–113.

  5. Barbour, M. T., Gerritsen, J., Snyder, B. D., & Stribling, J. B. (1999). Rapid bioassessment protocols for use in streams and wadeable rivers: algal, benthic macroinvertebrates and fish (2nd ed.). Washington DC: EPA 841-B-99-002, US Environmental Protection Agency, Office of Water.

    Google Scholar 

  6. Bere, T., Dalu, T., & Mwedzi, T. (2016). Detecting the impact of heavy metal contaminated sediment on benthic macroinvertebrate communities in tropical streams. Science of the Total Environment, 572, 147–156.

    CAS  Article  Google Scholar 

  7. Bere, T., & Mangadze, T. (2014). Diatom communities in streams draining urban areas: community structure in relation to environmental variables. Tropical Ecology, 55, 271–281.

  8. Bere, T., & Tundisi, J. G. (2009). Weighted average regression and calibration of conductivity and pH of benthic diatoms in streams influenced by urban pollution—Sao Carlos/SP Brazil. Acta Limnologica Brasiliensia, 21, 317–325.

    Google Scholar 

  9. Bere, T., & Tundisi, J. G. (2010). Biological monitoring of lotic ecosystems: the role of diatoms. Brazilian Journal of Biology, 70, 493–502.

    CAS  Article  Google Scholar 

  10. Bere, T., & Tundisi, J. G. (2011a). Influence of ionic strength and conductivity on benthic diatom communities in a tropical river (Monjolinho), São Carlos-SP, Brazil. Hydrobiologia, 661, 261–276.

    CAS  Article  Google Scholar 

  11. Bere, T., & Tundisi, J. G. (2011b). Influence of land-use patterns on benthic diatom communities and water quality in the tropical Monjolinho hydrological basin, São Carlos-SP, Brazil. Water SA, 37, 93–102.

    CAS  Article  Google Scholar 

  12. Beyene, A., Addis, T., Kifle, D., Legesse, W., Kloos, H., & Triest, L. (2009). Comparative study of diatoms and macroinvertebrates as indicators of severe water pollution: case study of the Kebena and Akaki rivers in Addis Ababa, Ethiopia. Ecological Indicators, 9, 381–392.

    CAS  Article  Google Scholar 

  13. Borcard, D., Legendre, P., & Drapeau, P. (1992). Partialling out the spatial component of ecological variation. Ecology, 73, 1045–1055.

    Article  Google Scholar 

  14. Bray, R. H., & Kurtz, L. T. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil Science, 59, 39–45.

    CAS  Article  Google Scholar 

  15. Cañedo-Argülles, M., Kefford, B. J., Piscart, C., Prat, N., Schäfer, R. B., & Schulz, C. J. (2013). Salinisation of rivers: an urgent ecological issue. Environmental Pollution, 173, 157–167.

    Article  Google Scholar 

  16. Chan, K. Y., Bowman, A., & Oates, A. (2001). Oxidizible organic carbon fractions and soil quality changes in an Oxic Paleustalfunder different pasture leys. Soil Science Society of American Journal, 166, 61–67.

    CAS  Article  Google Scholar 

  17. Charles, D. F., & Smol, J. P. (1988). New methods for using diatoms and chrysophytes to infer past pH of low-alkalinity lakes. Limnology and Oceanography, 33, 1451–1462.

    CAS  Google Scholar 

  18. Cholnoky, B. J. (1968). Die Ökologie der Diatomeen in Binnengewässern. Lehre: Cramer.

    Google Scholar 

  19. Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington DC: American Public Health Association, American Water Works Association and Water Environment Federation.

    Google Scholar 

  20. Dalu, T., Bere, T., & Froneman, P. W. (2016). Assessment of water quality based on diatom indices in a small temperate river system, Kowie River, South Africa. Water SA, 42, 183–193.

    CAS  Article  Google Scholar 

  21. Dalu, T., Bere, T., Richoux, N. B., & Froneman, P. W. (2015). Assessment of the spatial and temporal variations in periphyton communities along a small temperate river system: a multimetric and stable isotope analysis approach. South African Journal of Botany, 100, 203–212.

    CAS  Article  Google Scholar 

  22. Dalu, T., & Froneman, P. W. (2016). Diatom-based water quality monitoring in southern Africa: challenges and future prospects. Water SA, 42, 551–559.

    Article  Google Scholar 

  23. Dalu, T., Wasserman, R. J., Magoro, M., Mwedzi, T., Froneman, P. W., & Weyl, O. L. F. (2017a). Variation partitioning of benthic diatom community matrices: effect of multiple variables on benthic diatom communities in an Austral temperate river system. Science of the Total Environment, 601–602, 73–82.

    Article  Google Scholar 

  24. Dalu, T., Wasserman, R. J., Tonkin, J. D., Alexander, M. E., Dalu, M. T. B., Motitso, S., Manungo, K. I., Bepe, O., & Dube, T. (2017b). Assessing drivers of benthic macroinvertebrate community structure in African highlands: an exploration using multivariate analysis. Science of the Total Environment, 601–602, 1340–1348.

    Article  Google Scholar 

  25. Dalu, T., Wasserman, R. J., Tonkin, J. D., Mwedzi, T., Magoro, M., & Weyl, O. L. F. (2017c). Water or sediment? Partitioning the role of water column and sediment chemistry as drivers of macroinvertebrate communities in an austral South African stream. Science of the Total Environment, 607–608, 317–325.

    Article  Google Scholar 

  26. De La Rey, P. A., Taylor, J. C., Laas, A., van Rensburg, L., & Vosloo, A. (2004). Determining the possible application value of diatoms as indicators of general water quality: a comparison with SASS 5. Water SA, 30, 325–332.

    Google Scholar 

  27. Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z.-I., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur-Richard, A. H., Soto, D., Stiassny, M. L., & Sullivan, C. A. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews, 81, 163–182.

    Article  Google Scholar 

  28. Gŏmez, N., & Licursi, M. (2001). The Pampean Diatom Index (IDP) for assessment of rivers and streams in Argentina. Aquatic Ecology, 35, 173–181.

    Article  Google Scholar 

  29. Hering, D., Johnson, R. K., & Buffagni, A. (2006). Linking organism groups—major results and conclusions from the STAR project. Hydrobiologia, 566, 109–113.

    Article  Google Scholar 

  30. Higgins, J. V., Bryer, M. T., Khoury, M. L., & Fitzhugh, T. W. (2005). A freshwater classification approach for biodiversity conservation planning. Conservation Biology, 19, 432–445.

    Article  Google Scholar 

  31. Ingebrigtsen, R. A., Hansen, E., Andersen, J. H., & Eilertsen, H. C. (2016). Light and temperature effects on bioactivity in diatoms. Journal of Applied Phycology, 28, 939–950.

    CAS  Article  Google Scholar 

  32. Kilham, P., Kilham, S. S., & Hecky, R. E. (1986). Hypothesized resources relationships among African plankton diatoms. Limnology and Oceanography, 31, 1169–1181.

    Article  Google Scholar 

  33. Kobayasi, H., & Mayama, S. (1989). Most pollution-tolerant diatoms of severely polluted rivers in the vicinity of Tokyo. Japanese Journal of Phycology, 30, 188–196.

    Google Scholar 

  34. Lange-Bertalot, H. (1979). Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia, 64, 285–304.

    Google Scholar 

  35. Lobo, E. A., Callegaro, V. L. M., Hermany, G., Bes, D., Wetzel, C. E., & Oliveira, M. A. (2004). Use of epilithic diatoms as bioindicator from lotic systems in southern Brazil, with special emphasis on eutrophication. Acta Limnologica Brasiliensia, 16, 25–40.

    Google Scholar 

  36. Lowe, R. L. (1974). Environmental requirements and pollution tolerance of freshwater diatoms. Cincinnati: United States Environmental Protection Agency, EPA-670/4–74–005.

    Google Scholar 

  37. McArdle, B. H., & Anderson M. J. (2001). Fitting multivariate models to community data: a comment on distance based redundancy analysis. Ecology, 82, 290–297.

  38. Mangadze, T., Bere, T., & Mwedzi, T. (2016). Choice of biota in stream assessment and monitoring programs in tropical streams: a comparison of diatoms, macroinvertebrates and fish. Ecological Indicators, 63, 128–143.

    Article  Google Scholar 

  39. Miyamoto, H., Hashimoto, T., & Michioku, K. (2011). Basin wide distribution of land use and human population: stream order modeling and river basin classification in Japan. Environmental Management, 47, 885–898.

    Article  Google Scholar 

  40. Mwedzi, T., Bere, T., & Mangadze, T. (2016). Macroinvertebrate assemblages in agricultural, mining, and urban tropical streams: implications for conservation and management. Environmental Science and Pollution Research, 23, 11181–11192.

    CAS  Article  Google Scholar 

  41. Nel, H. A., Dalu, T., & Wasserman, R. J. (2018). Sinks and sources: assessing microplastic abundance in river sediment and deposit feeders in an Austral urban river system. Science of the Total Environment, 612, 950–956.

    CAS  Article  Google Scholar 

  42. Nhiwatiwa, T., Dalu, T., & Brendonck, L. (2017). Impact of irrigation based sugarcane cultivation on the Chiredzi and Runde rivers quality, Zimbabwe. Science of the Total Environment, 587–588, 316–325.

    Article  Google Scholar 

  43. Pan, Y., Herlihy, A., Kaufmann, P., Wigington, J., Van Sickle, J., & Moser, T. (2004). Linkages among land-use, water quality, physical habitat conditions and lotic diatom assemblages: a multi-spatial scale assessment. Hydrobiologia, 515, 59–73.

    Article  Google Scholar 

  44. Pan, Y., Stevenson, R. J., Hill, B. H., Herlihy, A. T., & Collins, G. B. (1996). Using diatoms as indicators of ecological conditions in lotic systems: a regional assessment. Journal of the North American Benthological Society, 15, 481–495.

    Article  Google Scholar 

  45. Pappas, J. L., & Stoermer, E. F. (1996). Formulation of a method to count number of individuals’ representative of number of species in algal communities. Journal of Phycology, 32, 693–196.

  46. Pearsall, W. H. (1932). Phytoplankton in the English Lakes II. Composition of the phytoplankton in relation to dissolved substances. Journal of Ecology, 2, 241–262.

    Article  Google Scholar 

  47. Platts, W. S., Megahan, W. F. & Minshall, W. G. (1983). Methods for evaluating stream, riparian, and biotic conditions. General Technical Report INT-138, USDA Forest Service, Rocky Mountain Research Station. Ogden, UT.

  48. Potapova, M., & Charles, D. F. (2002). Benthic diatoms in USA rivers: distributions along speciation and environmental gradients. Journal of Biogeography, 29, 167–187.

    Article  Google Scholar 

  49. Potapova, M., & Charles, D. F. (2003). Distribution of benthic diatoms in U.S. rivers in relation to conductivity and ionic composition. Freshwater Biology, 48, 1311–1328.

    CAS  Article  Google Scholar 

  50. Round, F. E. (1991). Diatoms in river water-monitoring studies. Journal of Applied Phycology, 3, 129–145.

    Article  Google Scholar 

  51. Saros, J. E., & Fritz, S. C. (2000). Nutrients as a link between ionic concentrations composition and diatom distributions in saline lakes. Journal of Paleolimnology, 23, 449–453.

    Article  Google Scholar 

  52. SPSS Inc., 2007. SPSS Release 16.0.0 for Windows. Polar Engineering and Consulting. Chicago (IL): SPSS Inc.

  53. Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Transactions of the American Geophysical Union, 38, 913–920.

    Article  Google Scholar 

  54. Tan, X., Ma, P., Xia, X., & Zhang, Q. (2014a). Spatial pattern of benthic diatoms and water quality assessment using diatom indices in a subtropical river, China. CLEAN Soil Air Water, 42, 20–28.

    CAS  Article  Google Scholar 

  55. Tan, X., Xia, X., Zhao, Q., & Zhang, Q. (2014b). Temporal variations of benthic diatom community and its main influencing factors in a subtropical river, China. Environmental Science and Pollution Research, 21, 434–444.

    Article  Google Scholar 

  56. Taylor, J. C., Harding, W. R. & Archibald, C. G. M. (2005). A methods manual for the collection, preparation and analysis of diatom samples. Version 1.0. WRC report no. TT 281/07. Pretoria: Water Research Commission.

  57. Taylor, J. C., Harding, W. R. & Archibald, C. G. M. (2007). An illustrated guide to some common diatom species from South Africa. WRC report no. TT 282/07. Pretoria: Water Research Commission.

  58. ter Braak, C. F. J., & Van Dam, H. (1989). Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia, 178, 209–223.

    Article  Google Scholar 

  59. ter Braak, C. J. F., & Prentice, I. C. (1988). A theory of gradient analysis. Advances in Ecological Research, 18, 271–313.

    Article  Google Scholar 

  60. ter Braak, C. J. F., & Šmilauer, P. (2002). CANOCO reference manual and can draw for Windows user’s guide: software for community ordination, version 4.5. Ithaca: Microcomputer Power.

    Google Scholar 

  61. ter Braak, C. J. F., & Verdonschot, P. F. M. (1995). Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences, 37, 130–137.

    Google Scholar 

  62. Van Dam, H., Mertens, A., & Sinkeldam, J. (1994). A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology, 28, 117–133.

    Article  Google Scholar 

  63. Verb, R. G., & Vis, M. L. (2000). Comparison of benthic diatom assemblages from streams draining abandoned and reclaimed coal mines and nonimpacted sites. Journal of the North American Benthological Society, 19, 274–288.

    Article  Google Scholar 

  64. Waite, I. R., Herlihy, A. T., Larsen, D. P., & Klemm, D. J. (2000). Comparing strengths of geographic and non-geographic classifications of stream benthic macroinvertebrates in the Mid-Atlantic Highlands. USA Journal of the North American Benthological Society, 19, 429–441.

    Article  Google Scholar 

  65. Walsh, G., & Wepener, V. (2009). The influence of land-use on water quality and diatom community structures in urban and agriculturally stressed rivers. Water SA, 35, 579–594.

    CAS  Article  Google Scholar 

  66. Zhang, Y., Wang, B., Han, M., & Wang, L. (2012). Relationships between the seasonal variations of macroinvertebrates, and land-uses for biomonitoring in the Xitiaoxi River watershed, China. International Review of Hydrobiology, 97, 184–199.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Mandla Magoro and Samuel Motitsoe for assistance with field work.

Funding

Financial support for this study was granted by the Claude Leon Postdoctoral Research Fellowship and Rhodes University to TD and the National Research Foundation of South Africa to RJW. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors, and the Claude Leon Foundation and NRF does not accept any liability in this regard.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tatenda Dalu.

Electronic supplementary material

Table S1

The distribution of most frequently occurring diatoms. Abbreviations: * < 1%, ** > 1 to 4.9%, *** > 5 to 9.9% and **** > 10% (PDF 210 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mangadze, T., Wasserman, R.J. & Dalu, T. Use of Diatom Communities as Indicators of Conductivity and Ionic Composition in a Small Austral Temperate River System. Water Air Soil Pollut 228, 428 (2017). https://doi.org/10.1007/s11270-017-3610-3

Download citation

Keywords

  • Benthic biota
  • Diatoms
  • Indicator species
  • Ionic composition
  • River salinisation
  • Stream order
  • Water quality