Adsorption of Cd(II) from Aqueous Solutions by a Novel Layered Double Hydroxide FeMnMg-LDH

  • Hongguang Zhou
  • Zhenmao Jiang
  • Shiqiang Wei
  • Jie Liang


The layered double hydroxides (LDHs) with a hydrotalcite-like structure are believed to possess great potentials as environmental remediation materials including removal of heavy metals from aqueous solutions by adsorption. A new LDH was synthesized with Mg2+ as the structure-stabilizing ion (FeMnMg-LDH) based on a co-precipitation method, which showed promised adsorption capacity for Pb. Its adsorption characteristics for Cd2+, an environmental active element relative to Pb, were examined in this paper. The results showed that adsorption equilibria were well described by Langmuir isotherm and the adsorption kinetics well followed a pseudo-second-order kinetic model. The maximum Cd2+ adsorption capacity of FeMnMg-LDH was about 59.99 mg/g at 25 °C, which is significantly higher than that of other similar kinds of absorbents. The high Cd2+ removal efficiency could maintain at a wide pH range due to its buffering capacity. The coexisting cations competed with Cd2+ adsorption on the FeMnMg-LDH with a sequence of Cu2+ > Pb2+ > Mg2+ > Ca2+ when coexisting ions were added in the adsorption system separately. The positive value of ΔH° (14.016 kJ/mol) suggested that the adsorption process is endothermic while the positive ΔS° value (0.08 kJ/mol K) revealed that the randomness increased at the solid-solution interface during the adsorption process. FeMnMg-LDH removes Cd2+ from aqueous solution mainly by surface adsorption, surface-induced precipitation, and ion exchange. The FeMnMg-LDH has been further proved to be a good absorbent for the removal of heavy metals from aqueous solution.


Hydrotalcite FeMnMg-LDH Cadmium Adsorption Heavy metals 


Funding Information

This research was supported by the National Key Research and Development Program (2017YFD0800903-03) and the National Natural Science Foundation of China (41771347 and 21207110).


  1. Allen, G. C., Harris, S. J., Jutson, J. A., & Dyke, J. M. (1989). A study of a number of mixed transition metal oxide spinels using X-ray photoelectron spectroscopy. Applied Surface Science, 37, 111–134.CrossRefGoogle Scholar
  2. Amini, M., Younesi, H., & Bahramifar, N. (2009). Statistical modeling and optimization of the cadmium biosorption process in an aqueous solution using Aspergillus niger. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 337, 67–73.CrossRefGoogle Scholar
  3. Aoki, A. (1976). X-ray photoelectron spectroscopic studies on ZnS: MnF2 phosphors. Japanese Journal of Applied Physics, 15, 305–311.CrossRefGoogle Scholar
  4. Apiratikul, R., & Pavasant, P. (2008). Sorption of Cu2+, Cd2+, and Pb2+ using modified zeolite from coal fly ash. Chemical Engineering Journal, 144, 245–258.CrossRefGoogle Scholar
  5. Chen, D., Li, Y., Zhang, J., Zhou, J. Z., Guo, Y., & Liu, H. (2012). Magnetic Fe3O4/ZnCr-layered double hydroxide composite with enhanced adsorption and photocatalytic activity. Chemical Engineering Journal, 185–186, 120–126.CrossRefGoogle Scholar
  6. Corami, A., Mignardi, S., & Ferrini, V. (2008). Cadmium removal from single- and multimetal (cd+Pb+Zn+ Cu) solutions by sorption on hydroxyapatite. Journal of Colloid and Interface Science, 317, 402–408.CrossRefGoogle Scholar
  7. Crini, G. (2005). Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress in Polymer Science, 30, 38–70.CrossRefGoogle Scholar
  8. Das, J., Das, D., Dash, G. P., & Parida, K. M. (2002). Studies on Mg/Fe hydrotalcite-like compound (HTlc): I. Removal of inorganic selenite (SeO3 2−) from aqueous medium. Journal of Colloid and Interface Science, 251, 26–32.CrossRefGoogle Scholar
  9. Davis, T. A., Volesky, B., & Vieira, R. H. S. F. (2000). Sargassum seaweed as biosorbent for heavy metals. Water Research, 344, 270–4278.Google Scholar
  10. Elkady, M. F., Mahmoud, M. M., & Abd-El-Rahman, H. M. (2011). Kinetic approach for cadmium sorption using microwave synthesized nano-hydroxyapatite. Journal of Non-Crystalline Solids, 357, 1118–1129.CrossRefGoogle Scholar
  11. Elouear, Z., Bouzid, J., Boujelben, N., Feki, M., Jamoussi, F., & Montiel, A. (2008). Heavy metal removal from aqueous solutions by activated phosphate rock. Journal of Hazardous Materials, 156, 412–420.CrossRefGoogle Scholar
  12. Evans, D. G., & Slade, R. C. T. (2006). Structural aspects of layered double hydroxides. Structure and Bonding, 119, 1–87.Google Scholar
  13. Feng, Y., Gong, J. L., Zeng, G. M., Niu, Q. Y., Zhang, H. Y., Niu, C. G., Deng, J. H., & Yan, M. (2010). Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chemical Engineering Journal, 162, 487–494.CrossRefGoogle Scholar
  14. František, K., Tomáš, G., & Vít, D. (2003). Thermal behaviour of Ni–Mn layered double hydroxide and characterization of formed oxides. Solid State Sciences, 5, 1019–1026.CrossRefGoogle Scholar
  15. Goncharuk, V. V., Puzyrnaya, L. N., Pshinko, G. N., Kosorukov, A. A., & Demchenko, V. Y. (2011). Removal of Cu(II), Ni(II), and Co(II) from aqueous solutions using layered double hydroxide intercalated with EDTA. Journal of Water Chemistry and Technology, 33, 288–292.CrossRefGoogle Scholar
  16. González, M. A., Pavlovic, I., Rojas-Delgado, R., & Barriga, C. (2014). Removal of Cu2+, Pb2+ and Cd2+ by layered double hydroxide–humate hybrid. Sorbate and sorbent comparative studies. Chemical Engineering Journal, 254, 605–611.CrossRefGoogle Scholar
  17. González, M. A., Pavlovic, I., & Barriga, C. (2015). Cu(II), Pb(II) and Cd(II) sorption on different layered double hydroxides. A kinetic and thermodynamic study and competing factors. Chemical Engineering Journal, 269, 221–228.CrossRefGoogle Scholar
  18. Heidari, A., Younesi, H., & Mehraban, Z. (2009). Removal of Ni(II), Cd(II), and Pb(II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica. Chemical Engineering Journal, 153, 70–79.CrossRefGoogle Scholar
  19. Helfferich, F. (1962). Ion exchange (Vol. 166). New York: McGraw-Hill.Google Scholar
  20. Hernandez-Moreno, M. J., Ulibarri, M. A., Rendon, J. L., & Serna, C. J. (1985). IR characteristics of hydrotalcite-like compounds. Physics and Chemistry of Minerals, 12, 34–38.Google Scholar
  21. Huang, G. L., Wang, D., Ma, S. L., Chen, J. L., Jiang, L., & Wang, P. Y. (2015). A new, low-cost adsorbent: Preparation, characterization, and adsorption behavior of Pb(II) and Cu(II). Journal of Colloid and Interface Science, 445, 294–302.CrossRefGoogle Scholar
  22. Kameda, T., Saito, S., & Umetsu, Y. (2005). Mg-Al layered double hydroxide intercalated with ethylene-diaminetetraacetate anion: synthesis and application to the uptake of heavy metal ions from an aqueous solution. Separation and Purification Technology, 47, 20–26.CrossRefGoogle Scholar
  23. Kameda, T., Takeuchi, H., & Yoshioka, T. (2008). Uptake of heavy metal ions from aqueous solution using Mg–Al layered double hydroxides intercalated with citrate, malate, and tartrate. Separation and Purification Technology, 62, 330–336.CrossRefGoogle Scholar
  24. Li, Y. L., Wang, J., Li, Z. S., Liu, Q., Liu, J. Y., Liu, L. H., Zhang, X. F., & Yu, J. (2013). Ultrasound assisted synthesis of Ca–Al hydrotalcite for U (VI) and Cr (VI) adsorption. Chemical Engineering Journal, 218, 295–302.CrossRefGoogle Scholar
  25. Liang, X. F., Hou, W. G., Xu, Y. M., Sun, G. H., Wang, L., Sun, Y., & Qin, X. (2010). Sorption of lead ion by layered double hydroxide intercalated with diethylenetriaminepentaacetic acid. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 366, 50–57.CrossRefGoogle Scholar
  26. Liang XF, Zang YB, Xu YM, Tan X, Hou WG, Wang L, Sun YB (2013) Sorption of metal cations on layered double hydroxides. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 433, 122–131.Google Scholar
  27. Malakootian, M., Almasi, A., & Hossaini, H. (2008). Pb and Co removal from paint industries effluent using wood ash. International Journal of Environmental Science and Technology, 5(2), 217–222.CrossRefGoogle Scholar
  28. María, A. A., Borau, V., Jiménez, C., Marinas, J. M., Ruiz, J. R., & Urbano, F. J. (2002). Comparative study of Mg/M(III) (M=Al, Ga, In) layered double hydroxides obtained by coprecipitation and the sol-gel method. Journal of Solid State Chemistry, 168, 156–161.CrossRefGoogle Scholar
  29. McIntyre, N. S., & Zetaruk, D. G. (1977). X-ray photoelectron spectroscopic studies of iron oxides. Analytical Chemistry, 49, 1521–1529.CrossRefGoogle Scholar
  30. Mills, P., & Sullivan, J. L. (1983). A study of the core level electrons in iron and its 3 oxides by means of x-ray photoelectron-spectroscopy. Journal of Physics D, 16, 723–740.CrossRefGoogle Scholar
  31. Mobasherpour, I., Salahi, E., & Pazouki, M. (2011). Removal of divalent cadmium cations by means of synthetic nano crystallite hydroxyapatite. Desalination, 266, 142–148.CrossRefGoogle Scholar
  32. Mohsen, S. M., Bakr, A.-S. A., El Naggar, A. M. A., & Sultan, E.-S. A. (2016). Water decontamination via the removal of Pb (II) using a new generation of highly energetic surface nano-material: Co+2Mo+6 LDH. Journal of Colloid and Interface Science, 461, 261–272.CrossRefGoogle Scholar
  33. Park, M., Choi, C. L., Seo, Y. J., Yeo, S. K., Choi, J., Komarneni, S., & Lee, J. H. (2007). Reactions of Cu2+ and Pb2+ with Mg/Al layered double hydroxide. Applied Clay Science, 37, 143–148.CrossRefGoogle Scholar
  34. Pavlovic, I., Pérez, M. R., Barriga, C., & Ulibarri, M. A. (2009). Adsorption of Cu2+, Cd2+ and Pb2+ ions by layered double hydroxides intercalated with the chelating agents diethylenetriaminepentaacetate and meso-2,3-dimercaptosuccinate. Applied Clay Science, 43, 125–129.CrossRefGoogle Scholar
  35. Pérez, M. R., Pavlovic, I., Barriga, C., Cornejo, J., Hermosín, M. C., & Ulibarri, M. A. (2006). Uptake of Cu2+, Cd2+ and Pb2+ on Zn–Al layered double hydroxide intercalated with edta. Applied Clay Science, 32(3–4), 245–251.CrossRefGoogle Scholar
  36. Pérez-Quintanilla, D., Sánchez, A., del Hierro, I., Fajardo, M., & Sierra, I. (2007). Preparation, characterization, and Zn2+ adsorption behavior of chemically modified MCM-41 with 5-mercapto-1-methyltetrazole. Journal of Colloid and Interface Science, 313, 551–562.CrossRefGoogle Scholar
  37. Sari, A., Mendil, D., Tuzen, M., & Soylak, M. (2008). Biosorption of Cd(II) and Cr(III) from aqueous solution by moss (Hylocomium splendens) biomass: equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 144, 1–9.CrossRefGoogle Scholar
  38. Seida, Y., & Nakano, Y. (2000). Removal of humic substances by layered double hydroxide containing iron. Water Research, 34, 1487–1494.CrossRefGoogle Scholar
  39. Shan, R. R., Yan, L. G., Yang, K., Hao, Y. F., & Du, B. (2015). Adsorption of Cd(II) by Mg–Al–CO3 and magnetic Fe3O4/Mg–Al–CO3-layered double hydroxides: kinetic, isothermal, thermodynamic and mechanistic studies. Journal of Hazardous Materials, 299(15), 42–49.CrossRefGoogle Scholar
  40. Shi, H. S., Zhang, P., Qian, G. R., & Ruan, X. X. (2010). Hybrid CaAl-SDS-LDH: preparation, structure and intercalation by sodium dodecyl sulfate into tricalcium aluminate. Chinese Journal of Inorganic Chemistry, 26, 1544–1548.Google Scholar
  41. Sprynskyy, M., Buszewski, B., Terzyk, A., & Namiesnik, J. (2006). Study of the selection mechanism of heavy metal (Pb2+, Cu2+,Ni2+, and Cd2+) adsorption on clinoptilolite. Journal of Colloid and Interface Science, 304(1), 21–28.CrossRefGoogle Scholar
  42. Srinivasan, M., Ferraris, C., & White, T. (2006). Cadmium and lead ion capture with three dimensionally ordered macroporous hydroxyapatite. Environmental Science & Technology, 40, 7054–7059.CrossRefGoogle Scholar
  43. Tan, B. J., Klabunde, K. J., & Sherwood, P. M. A. (1991). XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica. Journal of the American Chemical Society, 113, 855–861.CrossRefGoogle Scholar
  44. Tarasov, K. A., O'Hare, D., & Isupov, V. P. (2003). Solid-state chelation of metal ions by ethylenediaminetetraacetate intercalated in a layered double hydroxide. Inorganic Chemistry, 42(6), 1919–1927.CrossRefGoogle Scholar
  45. Thomas, G. S., & Kamath, P. V. (2006). Line broadening in the PXRD patterns of layered hydroxides: the relative effects of crystallite size and structural disorder. Journal of Chemical Sciences, 118, 127–133.CrossRefGoogle Scholar
  46. Tichit, D., Lorret, O., Coq, B., Prinetto, F., & Ghiotti, G. (2005). Synthesis and characterization of Zn/Al and Pt/Zn/Al layered double hydroxides obtained by the sol–gel method. Microporous and Mesoporous Materials, 80, 213–220.CrossRefGoogle Scholar
  47. Tong, D. S., Liu, M., Li, L., Lin, C. X., WH, Y., ZP, X., & Zhou, C. H. (2012). Transformation of alunite residuals into layered double hydroxides and oxides for adsorption of acid red G dye. Applied Clay Science, 70, 1–7.CrossRefGoogle Scholar
  48. Wagner, C. D., Riggs, W. M., Davis, L. E., Moulder, J. F., & Muilenberg, G. E. (1979). Handbook of X-ray photoelectron spectroscopy (Vol. 55344). Eden Prairie, Minn: Perkin-Elmer Corporation, Physical Electronics Division.Google Scholar
  49. Wang, C. C., Juang, L. C., Lee, C. K., Hsu, T. C., Lee, J. F., & Chao, H. P. (2004). Effects of exchanged surfactant cations on the pore structure and adsorption characteristics of montmorillonite. Journal of Colloid and Interface Science, 280, 27–35.CrossRefGoogle Scholar
  50. Wang, C. P., Liu, J. T., Zhang, Z. Y., Wang, B. L., & Sun, H. W. (2012). Adsorption of Cd(II), Ni(II), and Zn(II) by tourmaline at acidic conditions: kinetics, thermodynamics, and mechanisms. Industrial and Engineering Chemistry Research, 51(11), 4397–4406.CrossRefGoogle Scholar
  51. Weber, W. J., & Morris, J. C. (1962). Advances in water pollution research: removal of biologically resistant pollutant from waste water by adsorption. In Proceedings of the international conference on water pollution symposium, 2 (pp. 231–266). Oxford: Pergamon Press.Google Scholar
  52. Wei, W., Bediako, J. K., Kim, S., & Yun, Y. S. (2016). Removal of Cd(II) by poly(styrenesulfonic acid)-impregnated alginate capsule. Journal of the Taiwan Institute of Chemical Engineers, 61, 188–195.CrossRefGoogle Scholar
  53. Wu, P. X., WM, W., Li, S. Z., Xing, N., Zhu, N. W., Li, P., JH, W., Yang, C., & Dang, Z. (2009). Removal of Cd2+ from aqueous solution by adsorption using Fe-montmorillonite. Journal of Hazardous Materials, 169, 824–830.CrossRefGoogle Scholar
  54. Xu, Z. P., & Zeng, H. C. (2001). Abrupt structural transformation in hydrotalcite-like compounds Mg1−xAlx(OH)2(NO3)x·nH2O as a continuous function of nitrate anions. The Journal of Physical Chemistry. B, 105, 1743–1749.CrossRefGoogle Scholar
  55. Xu, Z. P., Jin, Y. G., Li, S. M., Hao, Z. P., & GQ, L. (2008). Surface charging of layered double hydroxides during dynamic interactions of anions at the interfaces. Journal of Colloid and Interface Science, 326, 522–529.CrossRefGoogle Scholar
  56. Yu, R. B., Wang, S. D., Wang, D., Ke, J. J., Xing, X. R., Kumada, N., & Kinomura, N. (2008). Removal of Cd2+ from aqueous solution with carbon modified aluminum-pillared montmorillonite. Catalysis Today, 139, 135–139.CrossRefGoogle Scholar
  57. Zhang, D. N., Jia, Y. F., Ma, J. Y., & Li, Z. B. (2011). Removal of arsenic from water by Friedel’s salt (FS: 3CaO·Al2O3·CaCl2·10H2O). Journal of Hazardous Materials, 195, 398–404.CrossRefGoogle Scholar
  58. Zhao, D. L., Sheng, G. D., Hua, J., Chen, C. L., & Wang, X. K. (2011). The adsorption of Pb(II) on Mg2Al layered double hydroxide. Chemical Engineering Journal, 171, 167–174.CrossRefGoogle Scholar
  59. Zhao, M. Q., Zhang, Q., Huang, J. Q., & Wei, F. (2012). Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides—properties, synthesis, and applications. Advanced Functional Materials, 22, 675–694.CrossRefGoogle Scholar
  60. Zhou, H. G., Jiang, Z. M., & Wei, S. Q. (2013). A novel absorbent of nano-Fe loaded biomass char and its enhanced adsorption capacity for phosphate in water. Journal of Chemistry, 649868
  61. Zhu, R. H., RB, Y., Yao, J. X., Mao, D., Xing, C. J., & Wang, D. (2008). Removal of Cd2+ from aqueous solutions by hydroxyapatite. Catalysis Today, 139, 94–99.CrossRefGoogle Scholar
  62. Zhu, X. H., Li, J., Luo, J. H., Jin, Y., & Zheng, D. (2017). Removal of cadmium (II) from aqueous solution by a new adsorbent of fluor-hydroxyapatite composites. Journal of the Taiwan Institute of Chemical Engineers, 70, 200–208.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Hongguang Zhou
    • 1
    • 2
    • 3
  • Zhenmao Jiang
    • 1
    • 2
    • 3
  • Shiqiang Wei
    • 1
    • 2
    • 3
  • Jie Liang
    • 1
  1. 1.College of Resources and EnvironmentSouthwest UniversityChongqingChina
  2. 2.Chongqing Key Laboratory of Agricultural Resources and EnvironmentChongqingChina
  3. 3.Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment (Ministry of Education)ChongqingChina

Personalised recommendations