Skip to main content
Log in

Profiling of Sulfate-Reducing Bacteria in an Offshore Oil Reservoir Using Phospholipid Fatty Acid (PLFA) Biomarkers

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

PLFA analysis was conducted to profile microorganisms and trace sulfate-reducing bacteria (SRB) in water samples from an offshore oil reservoir. From the results of spiked phospholipid standards, more than 90% of the phospholipids were recovered before the treatment of fatty acid methyl ester (FAME) derivatization while the relative standard deviations (RSD) were below 8.0%. The water samples from the injection well and four producing wells exhibited various reducing conditions and were further subjected to PLFA analysis. Fourteen kinds of phospholipid fatty acids were detected in the five wellbores and the concentrations of total fatty acids ranged from 368.4 to 3468.9 ng/L. Possible SRB biomarkers and significant phospholipid fatty acids associated with SRB including C14:0, i-C15:0, a-C15:0, C15:0, C16:1 (cis-9), C17:0, C18:1 (cis-9), C18:1 (cis-11) and C18:0 were selected for determining the presence of SRB species and evaluating the sulfate-related microbial biomass. The possible existence of SRB genera Desulfobacter, Desulfotomaculum, Desulfovibrio, and sulfur-oxidizing bacteria (SOB) in the reservoir were proposed based on PLFA profiles. The highest biomass was found in the most reducing well where very limited SOB biomarkers were found. Results indicated that the presence of SRB and SOB species was closely associated with the redox environment of the reservoir wellbores. The species distribution patterns were interpreted to elucidate the biological souring process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acosta-Martínez, V., Rowland, D., Sorensen, R. B., & Yeater, K. M. (2008). Microbial community structure and functionality under peanut-based cropping systems in a sandy soil. [journal article]. Biology and Fertility of Soils, 44(5), 681–692. https://doi.org/10.1007/s00374-007-0251-5.

    Article  Google Scholar 

  • Agrawal, A., Vanbroekhoven, K., & Lal, B. (2010). Diversity of culturable sulfidogenic bacteria in two oil–water separation tanks in the north-eastern oil fields of India. Anaerobe, 16(1), 12–18. https://doi.org/10.1016/j.anaerobe.2009.04.005.

    Article  CAS  Google Scholar 

  • Bernal, E. (2014). Limit of detection and limit of quantification determination in gas chromatography. In X. Guo (Ed.), Advances in gas chromatography (pp. 57–81). Rijeka: InTech.

    Google Scholar 

  • Boschker, H. T. S., Nold, S. C., Wellsbury, P., Bos, D., de Graaf, W., Pel, R., et al. (1998). Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature, 392(6678), 801–805. https://doi.org/10.1038/33900.

    Article  CAS  Google Scholar 

  • Boschker, H. T., de Graaf, W., Koster, M., Meyer-Reil, L., & Cappenberg, T. E. (2001). Bacterial populations and processes involved in acetate and propionate consumption in anoxic brackish sediment. FEMS Microbiology Ecology, 35(1), 97–103.

    Article  CAS  Google Scholar 

  • Church, C. D., Wilkin, R. T., Alpers, C. N., Rye, R. O., & McCleskey, R. B. (2007). Microbial sulfate reduction and metal attenuation in pH 4 acid mine water. Geochemical Transactions, 8, 10–10. https://doi.org/10.1186/1467-4866-8-10.

    Article  Google Scholar 

  • Dijkman, N. A., Boschker, H. T. S., Stal, L. J., & Kromkamp, J. C. (2010). Composition and heterogeneity of the microbial community in a coastal microbial mat as revealed by the analysis of pigments and phospholipid-derived fatty acids. Journal of Sea Research, 63(1), 62–70. https://doi.org/10.1016/j.seares.2009.10.002.

    Article  CAS  Google Scholar 

  • Dowling, N. J. E., Widdel, F., & White, D. C. (1986). Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulphate-reducers and other sulphide-forming bacteria. Microbiology, 132(7), 1815–1825. https://doi.org/10.1099/00221287-132-7-1815.

    Article  CAS  Google Scholar 

  • Drenovsky, R. E., Steenwerth, K. L., Jackson, L. E., & Scow, K. M. (2010). Land use and climatic factors structure regional patterns in soil microbial communities. Global Ecology and Biogeography, 19(1), 27–39. https://doi.org/10.1111/j.1466-8238.2009.00486.x.

    Article  Google Scholar 

  • Edlund, A., Nichols, P. D., Roffey, R., & White, D. C. (1985). Extractable and lipopolysaccharide fatty acid and hydroxy acid profiles from Desulfovibrio species. Journal of Lipid Research, 26(8), 982–988.

    CAS  Google Scholar 

  • Elvert, M., Boetius, A., Knittel, K., & Jorgensen, B. B. (2003). Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane. Geomicrobiology Journal, 20(4), 403–419. https://doi.org/10.1080/01490450303894.

    Article  CAS  Google Scholar 

  • Enning, D., & Garrelfs, J. (2014). Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Applied and Environmental Microbiology, 80(4), 1226–1236. https://doi.org/10.1128/Aem.02848-13.

    Article  Google Scholar 

  • Fang, J., & Findlay, R. H. (1996). The use of a classic lipid extraction method for simultaneous recovery of organic pollutants and microbial lipids from sediments. Journal of Microbiological Methods, 27(1), 63–71. https://doi.org/10.1016/0167-7012(96)00929-3.

    Article  Google Scholar 

  • Franzmann, P. D., Patterson, B. M., Power, T. R., Nichols, P. D., & Davis, G. B. (1996). Microbial biomass in a shallow, urban aquifer contaminated with aromatic hydrocarbons: analysis by phospholipid fatty acid content and composition. The Journal of Applied Bacteriology, 80(6), 617–625.

    Article  CAS  Google Scholar 

  • Gieg, L. M., Jack, T. R., & Foght, J. M. (2011). Biological souring and mitigation in oil reservoirs. Applied Microbiology and Biotechnology, 92(2), 263–282. https://doi.org/10.1007/s00253-011-3542-6.

    Article  CAS  Google Scholar 

  • Goorissen, H. P., Boschker, H. T., Stams, A. J., & Hansen, T. A. (2003). Isolation of thermophilic Desulfotomaculum strains with methanol and sulfite from solfataric mud pools, and characterization of Desulfotomaculum solfataricum sp. nov. International Journal of Systematic and Evolutionary Microbiology, 53(Pt 5), 1223–1229. https://doi.org/10.1099/ijs.0.02476-0.

    Article  CAS  Google Scholar 

  • Grabowski, A., Nercessian, O., Fayolle, F., Blanchet, D., & Jeanthon, C. (2005). Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiology Ecology, 54(3), 427–443. https://doi.org/10.1016/j.femsec.2005.05.007.

    Article  CAS  Google Scholar 

  • Grigoryan, A. A., Cornish, S. L., Buziak, B., Lin, S., Cavallaro, A., Arensdorf, J. J., et al. (2008). Competitive oxidation of volatile fatty acids by sulfate- and nitrate-reducing bacteria from an oil field in Argentina. Applied and Environmental Microbiology, 74(14), 4324–4335. https://doi.org/10.1128/AEM.00419-08.

    Article  CAS  Google Scholar 

  • Guezennec, J., & FialaMedioni, A. (1996). Bacterial abundance and diversity in the Barbados Trench determined by phospholipid analysis. FEMS Microbiology Ecology, 19(2), 83–93. https://doi.org/10.1016/0168-6496(95)00078-X.

    Article  CAS  Google Scholar 

  • Guezennec, J., Ortega-Morales, O., Raguenes, G., & Geesey, G. (1998). Bacterial colonization of artificial substrate in the vicinity of deep-sea hydrothermal vents. FEMS Microbiology Ecology, 26(2), 89–99. https://doi.org/10.1111/j.1574-6941.1998.tb00495.x.

    Article  CAS  Google Scholar 

  • Hasegawa, R., Toyama, K., Miyanaga, K., & Tanji, Y. (2014). Identification of crude-oil components and microorganisms that cause souring under anaerobic conditions. Applied Microbiology and Biotechnology, 98(4), 1853–1861. https://doi.org/10.1007/s00253-013-5107-3.

    Article  CAS  Google Scholar 

  • Head, I. M., Saunders, J. R., & Pickup, R. W. (1998). Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microbial Ecology, 35(1), 1–21.

    Article  CAS  Google Scholar 

  • Hubert, C., & Voordouw, G. (2007). Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors. Applied and Environmental Microbiology, 73(8), 2644–2652. https://doi.org/10.1128/aem.02332-06.

    Article  CAS  Google Scholar 

  • Jacq, E., Prieur, D., Nichols, P., White, D. C., Porter, T., & Geesey, G. G. (1989). Microscopic examination and fatty-acid characterization of filamentous bacteria colonizing substrata around subtidal hydrothermal vents. Archives of Microbiology, 152(1), 64–71. https://doi.org/10.1007/Bf00447013.

    Article  CAS  Google Scholar 

  • Jannasch, H. W. (1985). The chemosynthetic support of life and the microbial diversity at deep-sea hydrothermal vents. Proceedings of the Royal Society Series B-Biological Sciences, 225(1240), 277–297. https://doi.org/10.1098/rspb.1985.0062.

    Article  Google Scholar 

  • Jiang, L., Cai, C. F., Zhang, Y. D., Mao, S. Y., Sun, Y. G., Li, K. K., et al. (2012). Lipids of sulfate-reducing bacteria and sulfur-oxidizing bacteria found in the Dongsheng uranium deposit. Chinese Science Bulletin, 57(11), 1311–1319. https://doi.org/10.1007/s11434-011-4955-4.

    Article  CAS  Google Scholar 

  • Kaster, K. M., Bonaunet, K., Berland, H., Kjeilen-Eilertsen, G., & Brakstad, O. G. (2009). Characterisation of culture-independent and -dependent microbial communities in a high-temperature offshore chalk petroleum reservoir. Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology, 96(4), 423–439. https://doi.org/10.1007/s10482-009-9356-1.

    Article  Google Scholar 

  • Katayama-Fujimura, Y., Tsuzaki, N., & Kuraishi, H. (1982). Ubiquinone, fatty acid and DNA base composition determination as a guide to the taxonomy of the genus Thiobacillus. Microbiology, 128(7), 1599–1611. https://doi.org/10.1099/00221287-128-7-1599.

    Article  CAS  Google Scholar 

  • Kaur, A., Chaudhary, A., Kaur, A., Choudhary, R., & Kaushik, R. (2005). Phospholipid fatty acid––a bioindicator of environment monitoring and assessment in soil ecosystem. Current Science, 89(7), 1103–1112.

    CAS  Google Scholar 

  • Kohring, L. L., Ringelberg, D. B., Devereux, R., Stahl, D. A., Mittelman, M. W., & White, D. C. (1994). Comparison of phylogenetic-relationships based on phospholipid fatty-acid profiles and ribosomal RNA sequence similarities among dissimilatory sulfate-reducing bacteria. FEMS Microbiology Letters, 119(3), 303–308. https://doi.org/10.1111/j.1574-6968.1994.tb06905.x.

    Article  CAS  Google Scholar 

  • Larkin, J. M. (1980). Isolation of Thiothrix in pure culture and observation of a filamentous epiphyte on Thiothrix. Current Microbiology, 4(3), 155–158. https://doi.org/10.1007/Bf02602820.

    Article  Google Scholar 

  • Lenchi, N., Inceoglu, O., Kebbouche-Gana, S., Gana, M. L., Lliros, M., Servais, P., et al. (2013). Diversity of microbial communities in production and injection waters of Algerian oilfields revealed by 16S rRNA gene amplicon 454 pyrosequencing. PLoS One, 8(6), e66588. https://doi.org/10.1371/journal.pone.0066588.

    Article  CAS  Google Scholar 

  • Lien, T., & Beeder, J. (1997). Desulfobacter vibrioformis sp. nov., a sulfate reducer from a water-oil separation system. International Journal of Systematic Bacteriology, 47(4), 1124–1128.

    Article  CAS  Google Scholar 

  • Lin, J. Z., Hao, B., Cao, G. Z., Wang, J., Feng, Y., Tan, X. M., et al. (2014). A study on the microbial community structure in oil reservoirs developed by water flooding. Journal of Petroleum Science and Engineering, 122, 354–359. https://doi.org/10.1016/j.petrol.2014.07.030.

    Article  CAS  Google Scholar 

  • Londry, K. L., Jahnke, L. L., & Marais, D. J. D. (2004). Stable carbon isotope ratios of lipid biomarkers of sulfate-reducing bacteria. Applied and Environmental Microbiology, 70(2), 745–751. https://doi.org/10.1128/Aem.70.2.745-751.2004.

    Article  CAS  Google Scholar 

  • Lueders, T., & Friedrich, M. W. (2003). Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts. Applied and Environmental Microbiology, 69(1), 320–326. https://doi.org/10.1128/Aem.69.1.320-326.2003.

    Article  CAS  Google Scholar 

  • Mccaffrey, M. A., Farrington, J. W., & Repeta, D. J. (1989). Geochemical implications of the lipid-composition of Thioploca spp. from the Peru upwelling region––15°S. Organic Geochemistry, 14(1), 61–68. https://doi.org/10.1016/0146-6380(89)90019-3.

    Article  CAS  Google Scholar 

  • Miranda-Tello, E., Fardeau, M. L., Fernandez, L., Ramirez, F., Cayol, J. L., Thomas, P., et al. (2003). Desulfovibrio capillatus sp nov., a novel sulfate-reducing bacterium isolated from an oil field separator located in the Gulf of Mexico. Anaerobe, 9(2), 97–103. https://doi.org/10.1016/S1075-9964(03)00064-7.

    Article  CAS  Google Scholar 

  • Mohanty, S. R., Kollah, B., Hedrick, D. B., Peacock, A. D., Kukkadapu, R. K., & Roden, E. E. (2008). Biogeochemical processes in ethanol stimulated uranium-contaminated subsurface sediments. Environmental Science & Technology, 42(12), 4384–4390. https://doi.org/10.1021/es703082v.

    Article  CAS  Google Scholar 

  • Moore-Kucera, J., & Dick, R. P. (2008). PLFA profiling of microbial community structure and seasonal shifts in soils of a Douglas-fir chronosequence. Microbial Ecology, 55(3), 500–511. https://doi.org/10.1007/s00248-007-9295-1.

    Article  Google Scholar 

  • Moser, H., Pölz, W., Waclawek, J. P., Ofner, J., & Lendl, B. (2017). Implementation of a quantum cascade laser-based gas sensor prototype for sub-ppmv H2S measurements in a petrochemical process gas stream. Analytical and Bioanalytical Chemistry, 409(3), 729–739. https://doi.org/10.1007/s00216-016-9923-z.

    Article  CAS  Google Scholar 

  • Muyzer, G., & Stams, A. J. M. (2008). The ecology and biotechnology of sulphate-reducing bacteria. Nature Reviews Microbiology, 6(6), 441–454. https://doi.org/10.1038/nrmicro1892.

    CAS  Google Scholar 

  • Okpala, G. N., Chen, C., Fida, T., & Voordouw, G. (2017). Effect of thermophilic nitrate reduction on sulfide production in high temperature oil reservoir samples. [original research]. Frontiers in Microbiology, 8, 1573. https://doi.org/10.3389/fmicb.2017.01573.

    Article  Google Scholar 

  • Pan, Y., Bodrossy, L., Frenzel, P., Hestnes, A. G., Krause, S., Luke, C., et al. (2010). Impacts of inter- and intralaboratory variations on the reproducibility of microbial community analyses. Applied and Environmental Microbiology, 76(22), 7451–7458. https://doi.org/10.1128/AEM.01595-10.

    Article  CAS  Google Scholar 

  • Ren, H. Y., Xiong, S. Z., Gao, G. J., Song, Y. T., Cao, G. Z., Zhao, L. P., et al. (2015). Bacteria in the injection water differently impacts the bacterial communities of production wells in high-temperature petroleum reservoirs. Frontiers in Microbiology, 6, 505. https://doi.org/10.3389/fmicb.2015.00505.

    Google Scholar 

  • Ruess, L., & Chamberlain, P. M. (2010). The fat that matters: soil food web analysis using fatty acids and their carbon stable isotope signature. Soil Biology & Biochemistry, 42(11), 1898–1910. https://doi.org/10.1016/j.soilbio.2010.07.020.

    Article  CAS  Google Scholar 

  • Rütters, H., Sass, H., Cypionka, H., & Rullkotter, J. (2001). Monoalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcina variabilis and Desulforhabdus amnigenus. Archives of Microbiology, 176(6), 435–442. https://doi.org/10.1007/s002030100343.

    Article  Google Scholar 

  • Shibulal, B., Al-Bahry, S. N., Al-Wahaibi, Y. M., Elshafie, A. E., Al-Bemani, A. S., & Joshi, S. J. (2014). Microbial enhanced heavy oil recovery by the aid of inhabitant spore-forming bacteria: an insight review. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/309159.

  • Sun, J., Hu, S. H., Sharma, K. R., Ni, B. J., & Yuan, Z. G. (2014). Stratified microbial structure and activity in sulfide- and methane-producing anaerobic sewer biofilms. Applied and Environmental Microbiology, 80(22), 7042–7052. https://doi.org/10.1128/Aem.02146-14.

    Article  Google Scholar 

  • Tanner, R. S. (1989). Monitoring sulfate-reducing bacteria––comparison of enumeration media. Journal of Microbiological Methods, 10(2), 83–90. https://doi.org/10.1016/0167-7012(89)90004-3.

    Article  Google Scholar 

  • Tardy-Jacquenod, C., Magot, M., Patel, B. K. C., Matheron, R., & Caumette, P. (1998). Desulfotomaculum halophilum sp. nov., a halophilic sulfate-reducing bacterium isolated from oil production facilities. International Journal of Systematic Bacteriology, 48, 333–338.

    Article  Google Scholar 

  • Taylor, J., & Parkes, R. J. (1983). The cellular fatty-acids of the sulfate-reducing bacteria, Desulfobacter Sp, Desulfobulbus Sp and Desulfovibrio desulfuricans. Journal of General Microbiology, 129, 3303–3309.

    CAS  Google Scholar 

  • Usher, K. M., Kaksonen, A. H., Cole, I., & Marney, D. (2014). Critical review: microbially influenced corrosion of buried carbon steel pipes. International Biodeterioration & Biodegradation, 93, 84–106. https://doi.org/10.1016/j.ibiod.2014.05.007.

    Article  CAS  Google Scholar 

  • Vainshtein, M., Hippe, H., & Kroppenstedt, R. M. (1992). Cellular fatty-acid composition of Desulfovibrio species and its use in classification of sulfate-reducing bacteria. Systematic and Applied Microbiology, 15(4), 554–566.

    Article  CAS  Google Scholar 

  • Virtue, P., Nichols, P. D., & Boon, P. I. (1996). Simultaneous estimation of microbial phospholipid fatty acids and diether lipids by capillary gas chromatography. Journal of Microbiological Methods, 25(2), 177–185. https://doi.org/10.1016/0167-7012(95)00095-X.

    Article  CAS  Google Scholar 

  • White, D. C., & Ringelberg, D. B. (1997). Utility of the signature lipid biomarker analysis in determining in situ viable biomass, community structure and nutritional/physiological status of deep subsurface microbiota. In P. S. Amy, & D. L. Haldeman (Eds.), The microbiology of the terrestrial deep subsurface (pp. 119–136). Boca Raton: CRC Press.

  • Wixon, D. L., & Balser, T. C. (2013). Toward conceptual clarity: PLFA in warmed soils. Soil Biology and Biochemistry, 57, 769–774. https://doi.org/10.1016/j.soilbio.2012.08.016.

    Article  CAS  Google Scholar 

  • Yu, X., Shi, X., Wei, B., Ye, L., & Zhang, S. T. (2009). PLFA profiles of drinking water biofilters with different acetate and glucose loadings. Ecotoxicology, 18(6), 700–706. https://doi.org/10.1007/s10646-009-0346-x.

    Article  CAS  Google Scholar 

  • Zelles, L. (1999). Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biology and Fertility of Soils, 29(2), 111–129. https://doi.org/10.1007/s003740050533.

    Article  CAS  Google Scholar 

  • Zhang, C. L. L., Li, Y. L., Wall, J. D., Larsen, L., Sassen, R., Huang, Y. S., et al. (2002). Lipid and carbon isotopic evidence of methane-oxidizing and sulfate-reducing bacteria in association with gas hydrates from the Gulf of Mexico. Geology, 30(3), 239–242. https://doi.org/10.1130/0091-7613(2002)030<0239:Lacieo>2.0.Co;2.

    Article  CAS  Google Scholar 

  • Zhang, C. L., Huang, Z. Y., Cantu, J., Pancost, R. D., Brigmon, R. L., Lyons, T. W., et al. (2005). Lipid biomarkers and carbon isotope signatures of a microbial (Beggiatoa) mat associated with gas hydrates in the Gulf of Mexico. Applied and Environmental Microbiology, 71(4), 2106–2112. https://doi.org/10.1128/Aem.71.4.2106-2112.2005.

    Article  CAS  Google Scholar 

  • Zhang, P., Gu, J., He, J., Gao, W., et al. (2011). Next-generation and future DNA sequencing technologies and metagenomic. In R. W. Li (Ed.), Metagenomics and its applications in agriculture, biomedicine and environmental studies (pp. 79–106). New York: Nova Sciences Publishers.

    Google Scholar 

  • Zhang, J., Wang, R., Du, X., Li, F., & Dai, J. (2012). Characterization of contamination, source and degradation of petroleum between upland and paddy fields based on geochemical characteristics and phospholipid fatty acids. Journal of Environmental Sciences (China), 24(11), 1995–2003.

    Article  CAS  Google Scholar 

  • Zink, K. G., Wilkes, H., Disko, U., Elvert, M., & Horsfield, B. (2003). Intact phospholipids––microbial “life markers” in marine deep subsurface sediments. Organic Geochemistry, 34(6), 755–769. https://doi.org/10.1016/S0146-6380(03)00041-X.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baiyu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, F., Zhang, B., Morrill, P.L. et al. Profiling of Sulfate-Reducing Bacteria in an Offshore Oil Reservoir Using Phospholipid Fatty Acid (PLFA) Biomarkers. Water Air Soil Pollut 228, 410 (2017). https://doi.org/10.1007/s11270-017-3595-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3595-y

Keywords

Navigation