Skip to main content
Log in

Fabrication of Tannin-Based Dithiocarbamate Biosorbent and Its Application for Ni(II) Ion Removal

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Modified natural biosorbents have been the research hot spot in wastewater treatment field. Natural polyphenol compounds, tannins with many functional groups can be easily modified to produce biosorbents. This work presents an environmentally friendly tannin-based dithiocarbamate (TDTC) with enhanced function of adsorption. TDTC was successfully synthesized by a two-step method involving Mannich reaction and esterification. The structure and synthetic mechanisms of TDTC were discussed through instrumental analysis. The BET-specific surface area analysis results showed that TDTC exhibited a mesoporous structure with an increased surface area. Parameters affecting adsorption such as initial pH, adsorbent dosage, contact time, initial concentration, and temperature were systematically examined. Results showed that the maximum adsorption capacity toward Ni(II) of TDTC was 112.49 mg/g. In addition, TDTC exhibited a fast adsorption rate and 80% of the Ni(II) was removed within just 20 min. The adsorption kinetics and adsorption isotherm were well described by the pseudo-second-order model and Langmuir model, respectively. Moreover, TDTC could be easily regenerated without obvious loss of adsorption capability after five adsorption–desorption cycles. All these results indicate that TDTC is an ideal candidate for the efficient removal of Ni(II).

Removal of Ni(II) from water using environmental-friendly tannin-based dithiocarbamate biosorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

TDTC:

tannin-based dithiocarbamate

FTIR:

Fourier transform-infrared spectroscopy

FSEM:

field-emission scanning electron microscopy

EDS:

energy-dispersive spectroscopy

XPS:

X-ray photoelectron spectroscopy

BT:

bayberry tannin

R:

removal efficiency

Qe :

adsorbed amount at equilibrium

References

  • Akter, N., Hossain, M. A., Hassan, M. J., Amin, M. K., Elias, M., Rahman, M. M., Asiri, A. M., Siddiquey, I. A., & Hasnat, M. A. (2016). Amine modified tannin gel for adsorptive removal of Brilliant Green dye. Journal of Environmental Chemical Engineering, 4(1), 1231–1241.

    Article  CAS  Google Scholar 

  • Bakalar, T., Bugel, M., & Gajdosova, L. (2009). Heavy metal removal using reverse osmosis. Acta Montanistica Slovaca, 14(3), 250–253.

    CAS  Google Scholar 

  • Bediako, J. K., Wei, W., Kim, S., & Yun, Y. (2015). Removal of heavy metals from aqueous phases using chemically modified waste Lyocell fiber. Journal of Hazardous Materials, 299, 550–561.

    Article  CAS  Google Scholar 

  • Beltran Heredia, J., & Sanchez Martin, J. (2009). Removing heavy metals from polluted surface water with a tannin-based flocculant agent. Journal of Hazardous Materials, 165(1–3), 1215–1218.

    Article  CAS  Google Scholar 

  • Beltran-Heredia, J., Sanchez-Martin, J., & Davila-Acedo, M. A. (2011). Optimization of the synthesis of a new coagulant from a tannin extract. Journal of Hazardous Materials, 186(2–3), 1704–1712.

    Article  CAS  Google Scholar 

  • Beltran-Heredia, J., Palo, P., Sanchez-Martin, J., Dominguez, J. R., & Gonzalez, T. (2012). Natural adsorbents derived from tannin extracts for pharmaceutical removal in water. Industrial & Engineering Chemistry Research, 51(1), 50–57.

    Article  CAS  Google Scholar 

  • Chakraborti, R. K., Gardner, K. H., Atkinson, J. F., & Van Benschoten, J. E. (2003). Changes in fractal dimension during aggregation. Water Research, 37(PII S0043–1354(02)00379–24), 873–883.

    Article  CAS  Google Scholar 

  • Deng, S., Wang, P., Zhang, G., & Dou, Y. (2016). Polyacrylonitrile-based fiber modified with thiosemicarbazide by microwave irradiation and its adsorption behavior for Cd(II) and Pb(II). Journal of Hazardous Materials, 307, 64–72.

    Article  CAS  Google Scholar 

  • Dermentzis, K. (2010). Removal of nickel from electroplating rinse waters using electrostatic shielding electrodialysis/electrodeionization. Journal of Hazardous Materials, 173(1–3), 647–652.

    Article  CAS  Google Scholar 

  • Ewecharoen, A., Thiravetyan, P., & Nakbanpote, W. (2008). Comparison of nickel adsorption from electroplating rinse water by coir pith and modified coir pith. Chemical Engineering Journal, 137(2), 181–188.

    Article  CAS  Google Scholar 

  • Freundlich, H. (1906). Concerning adsorption in solutions. Zeitschrift Fur Physikalische Chemie--Stochiometrie Und Verwandtschaftslehre, 57(4), 385–470.

    CAS  Google Scholar 

  • Furlani, C., Polzonetti, G., Preti, C., & Tosi, G. (1983). XPS of coordination compounds: data on the electronic structure of a series of Cu(II) N,N′-cyclic substituted dithiocarbamates. Inorganica Chimica Acta-Articles, 73(1), 105–111.

    Article  CAS  Google Scholar 

  • Ge, Y., Li, Z., Kong, Y., Song, Q., & Wang, K. (2014). Heavy metal ions retention by bi-functionalized lignin: synthesis, applications, and adsorption mechanisms. Journal of Industrial and Engineering Chemistry, 20(6), 4429–4436.

    Article  CAS  Google Scholar 

  • Ge, Y., Xiao, D., Li, Z., & Cui, X. (2015a). Dithiocarbamate functionalized lignin for efficient removal of metallic ions and the usage of the metal-loaded bio-sorbents as potential free radical scavengers (vol 2, pg 2136, 2014). Journal of Materials Chemistry A, 3(14), 7666.

    Article  CAS  Google Scholar 

  • Ge, Y., Song, Q., & Li, Z. (2015b). A Mannich base biosorbent derived from alkaline lignin for lead removal from aqueous solution. Journal of Industrial and Engineering Chemistry, 23, 228–234.

    Article  CAS  Google Scholar 

  • Gonzalez Bermudez, Y., Rodriguez Rico, I. L., Gutierrez Bermudez, O., & Guibal, E. (2011). Nickel biosorption using Gracilaria caudata and Sargassum muticum. Chemical Engineering Journal, 166(1), 122–131.

    Article  Google Scholar 

  • Gupta, B. S., Curran, M., Hasan, S., & Ghosh, T. K. (2009). Adsorption characteristics of Cu and Ni on Irish peat moss. Journal of Environmental Management, 90(2), 954–960.

    Article  Google Scholar 

  • Jing, X., Liu, F., Yang, X., Ling, P., Li, L., Long, C., & Li, A. (2009). Adsorption performances and mechanisms of the newly synthesized N,N′-di (carboxymethyl) dithiocarbamate chelating resin toward divalent heavy metal ions from aqueous media. Journal of Hazardous Materials, 167(1–3), 589–596.

    Article  CAS  Google Scholar 

  • Kannamba, B., Reddy, K. L., & AppaRao, B. V. (2010). Removal of Cu(II) from aqueous solutions using chemically modified chitosan. Journal of Hazardous Materials, 175(1–3), 939–948.

    Article  CAS  Google Scholar 

  • Khabibi, J., Syafii, W., & Sari, R. K. (2016). Reducing hazardous heavy metal ions using mangium bark waste. Environmental Science and Pollution Research, 23(16), 16631–16640.

    Article  CAS  Google Scholar 

  • Khanbabaee, K., & van Ree, T. (2001). Tannins: classification and definition. Natural Product Reports, 18(6), 641–649.

    Article  CAS  Google Scholar 

  • Kim, Y., Ogata, T., & Nakano, Y. (2007). Kinetic analysis of palladium(II) adsorption process on condensed-tannin gel based on redox reaction models. Water Research, 41(14), 3043–3050.

    Article  CAS  Google Scholar 

  • Lakshtanov, L. Z., & Stipp, S. L. S. (2007). Experimental study of nickel(II) interaction with calcite: adsorption and coprecipitation. Geochimica et Cosmochimica Acta, 71(15), 3686–3697.

    Article  CAS  Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1403.

    Article  CAS  Google Scholar 

  • Li, W., Tang, Y., Zeng, Y., Tong, Z., Liang, D., & Cui, W. (2012). Adsorption behavior of Cr(VI) ions on tannin-immobilized activated clay. Chemical Engineering Journal, 193, 88–95.

    Google Scholar 

  • Li, Z., Xiao, D., Ge, Y., & Koehler, S. (2015a). Surface-functionalized porous lignin for fast and efficient lead removal from aqueous solution. ACS Applied Materials & Interfaces, 7(27), 15000–15009.

    Article  CAS  Google Scholar 

  • Li, Z., Kong, Y., & Ge, Y. (2015b). Synthesis of porous lignin xanthate resin for Pb2+ removal from aqueous solution. Chemical Engineering Journal, 270, 229–234.

    Article  CAS  Google Scholar 

  • Li, Z., Ge, Y., & Wan, L. (2015c). Fabrication of a green porous lignin-based sphere for the removal of lead ions from aqueous media. Journal of Hazardous Materials, 285, 77–83.

    Article  CAS  Google Scholar 

  • Maria Rahman, M., Akter, N., Karim, M. R., Ahmad, N., Rahman, M. M., Siddiquey, I. A., Bahadur, N. M., & Hasnat, M. A. (2014). Optimization, kinetic and thermodynamic studies for removal of Brilliant Red (X-3B) using Tannin gel. Journal of Environmental Chemical Engineering, 2(1), 76–83.

    Article  CAS  Google Scholar 

  • Matusik, J., & Wscislo, A. (2014). Enhanced heavy metal adsorption on functionalized nanotubular halloysite interlayer grafted with aminoalcohols. Applied Clay Science, 100(SI), 50–59.

    Article  CAS  Google Scholar 

  • Miretzky, P., & Fernandez Cirelli, A. (2010). Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. Journal of Hazardous Materials, 180(1–3), 1–19.

    Article  CAS  Google Scholar 

  • Naczk, M., & Shahidi, F. (2007). Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis (vol 41, pg 1523, 2006). Journal of Pharmaceutical and Biomedical Analysis, 43(2), 798.

    Article  CAS  Google Scholar 

  • Nakano, Y., Takeshita, K., & Tsutsumi, T. (2001). Adsorption mechanism of hexavalent chromium by redox within condensed-tannin gel. Water Research, 35(2), 496–500.

    Article  CAS  Google Scholar 

  • Ngomsik, A. F., Bee, A., Siaugue, J. M., Cabuil, V., & Cote, G. (2006). Nickel adsorption by magnetic alginate microcapsules containing an extractant. Water Research, 40(9), 1848–1856.

    Article  CAS  Google Scholar 

  • Nuhoglu, Y., & Malkoc, E. (2009). Thermodynamic and kinetic studies for environmentaly friendly Ni(II) biosorption using waste pomace of olive oil factory. Bioresource Technology, 100(8), 2375–2380.

    Article  CAS  Google Scholar 

  • Pillai, S. S., Deepa, B., Abraham, E., Girija, N., Geetha, P., Jacob, L., & Koshy, M. (2013). Biosorption of Cd(II) from aqueous solution using xanthated nano banana cellulose: equilibrium and kinetic studies. Ecotoxicology and Environmental Safety, 98, 352–360.

    Article  CAS  Google Scholar 

  • Ping, L., Brosse, N., Chrusciel, L., Navarrete, P., & Pizzi, A. (2011). Extraction of condensed tannins from grape pomace for use as wood adhesives. Industrial Crops and Products, 33(1), 253–257.

    Article  CAS  Google Scholar 

  • Raval, N. P., Shah, P. U., & Shah, N. K. (2016). Adsorptive removal of nickel(II) ions from aqueous environment: a review. Journal of Environmental Management, 179, 1–20.

    Article  CAS  Google Scholar 

  • Reddy, D. H. K., Ramana, D. K. V., Seshaiah, K., & Reddy, A. V. R. (2011). Biosorption of Ni(II) from aqueous phase by Moringa oleifera bark, a low cost biosorbent. Desalination, 268(1–3), 150–157.

    Article  CAS  Google Scholar 

  • Samper, E., Rodriguez, M., De la Rubia, M. A., & Prats, D. (2009). Removal of metal ions at low concentration by micellar-enhanced ultrafiltration (MEUF) using sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS). Separation and Purification Technology, 65(3), 337–342.

    Article  CAS  Google Scholar 

  • Sanchez-Martin, J., Beltran-Heredia, J., & Gragera-Carvajal, J. (2011a). Caesalpinia spinosa and Castanea sativa tannins: a new source of biopolymers with adsorbent capacity. Preliminary assessment on cationic dye removal. Industrial Crops and Products, 34(1), 1238–1240.

    Article  CAS  Google Scholar 

  • Sanchez-Martin, J., Beltran-Heredia, J., & Gibello-Perez, P. (2011b). Adsorbent biopolymers from tannin extracts for water treatment. Chemical Engineering Journal, 168(3), 1241–1247.

    Article  CAS  Google Scholar 

  • Sanchez-Martin, J., Beltran-Heredia, J., Seabra, I. J., Braga, M. E. M., & de Sousa, H. C. (2012). Adsorbent derived from Pinus pinaster tannin for cationic surfactant removal. Journal of Wood Chemistry and Technology, 32(1), 23–41.

    Article  CAS  Google Scholar 

  • Tan, P., Sun, J., Hu, Y., Fang, Z., Bi, Q., Chen, Y., & Cheng, J. (2015). Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes. Journal of Hazardous Materials, 297, 251–260.

    Article  CAS  Google Scholar 

  • Thevannan, A., Mungroo, R., & Niu, C. H. (2010). Biosorption of nickel with barley straw. Bioresource Technology, 101(6), 1776–1780.

    Article  CAS  Google Scholar 

  • Vinod, V. T. P., Sashidhar, R. B., & Sreedhar, B. (2010). Biosorption of nickel and total chromium from aqueous solution by gum kondagogu (Cochlospermum gossypium): a carbohydrate biopolymer. Journal of Hazardous Materials, 178(1–3), 851–860.

    Article  CAS  Google Scholar 

  • Wang, X., Liu, Y., & Zheng, J. (2016). Removal of As(III) and As(V) from water by chitosan and chitosan derivatives: a review. Environmental Science and Pollution Research, 23(14), 13789–13801.

    Article  CAS  Google Scholar 

  • Yu, X. R., Liu, F., Wang, Z. Y., & Chen, Y. (1990). Auger parameters for sulfur-containing compounds using a mixed aluminum-silver excitation source. Journal of Electron Spectroscopy and Related Phenomena, 50(1–2), 159–166.

    Article  CAS  Google Scholar 

  • Yurtsever, M., & Sengil, I. A. (2009). Biosorption of Pb(II) ions by modified quebracho tannin resin. Journal of Hazardous Materials, 163(1), 58–64.

    Article  CAS  Google Scholar 

  • Zhan, X. M., Miyazaki, A., & Nakano, Y. (2001). Mechanisms of lead removal from aqueous solutions using a novel tannin gel adsorbent synthesized from natural condensed tannin. Journal of Chemical Engineering of Japan, 34(10), 1204–1210.

    Article  CAS  Google Scholar 

  • Zhao, P., Jiang, J., Zhang, F., Zhao, W., Liu, J., & Li, R. (2010). Adsorption separation of Ni(II) ions by dialdehyde o-phenylenediamine starch from aqueous solution. Carbohydrate Polymers, 81(4), 751–757.

    Article  CAS  Google Scholar 

  • Zhao, P., Ge, S., Chen, Z., & Li, X. (2013). Study on pore characteristics of flocs and sludge dewaterability based on fractal methods (pore characteristics of flocs and sludge dewatering). Applied Thermal Engineering, 58(1–2), 217–223.

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Project No. 21677020)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaili Zheng.

Electronic Supplementary Material

ESM 1

(DOCX 194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Zheng, H., Sun, Y. et al. Fabrication of Tannin-Based Dithiocarbamate Biosorbent and Its Application for Ni(II) Ion Removal. Water Air Soil Pollut 228, 409 (2017). https://doi.org/10.1007/s11270-017-3593-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3593-0

Keywords

Navigation