Skip to main content

Advertisement

Log in

Thermochemical Conversion of Biomass Storage Covers to Reduce Ammonia Emissions from Dairy Manure

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Manure storages, and in particular those storing digested manure, are a source of ammonia (NH3) emissions. Installing floating manure covers provide resistance to gas transfer from manure storage surface to air and reduces NH3 emissions; however, performance can be limited to durability. Biochar and steam-treated wood have strong potential as manure storage covers as they are capable of repelling water, resistant to microbial degradation, and could be applied to crop acreage. An additional benefit of biochars as a cover is their capability of NH3 sorption trapping TAN (total ammoniacal N) before it is volatilized resulting in further abatement. Installation of permeable manure storage covers is difficult and adding covers with agitators could facilitate implementation. This study measured NH3 emissions from laboratory scale storages of digested manure with raw wood (white birch, Betula papyrifera), steam-treated wood, wood biochar, and corncob biochar covers. Additional treatments included mixing biomass treatments into manure storages to measure the reduction potential of incorporated biomass. All treatments reduced emissions of NH3 from the control by 40 to 96%. The highest NH3 emissions reductions of 96% were achieved with the wood biochar cover. The primary mechanism for treatment was resistance to gas transfer provided by the physical barrier of covers as NH3 sorption did not correspond to reductions. Covering digested manure storages with any of the treatments can reduce NH3 emissions; biochar covers are a more effective barrier to NH3 emissions and are recommended to minimize NH3 manure storage losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AD:

Anaerobic digestion

BET:

Brunauer-Emmett-Teller method

CEC:

Cation-exchange capacity

CH4:

Methane

CO2:

Carbon dioxide

Cob BC C:

Cob biochar cover

Cob BC I:

Incorporated cob biochar

N2O:

Nitrous oxide

NH3 :

Ammonia

NH4 :

Ammonium

Steamed C:

Steamed wood cover

Steamed I:

Incorporated-steamed wood

TAN:

Total ammoniacal nitrogen

TKN:

Total Kjeldahl nitrogen

Wood BC I:

Incorporated wood biochar

Wood C:

Wood cover

Wood I:

Incorporated wood cover

Wood BC C:

Wood biochar cover

References

  • Adjei, T. (2007). Characterization of a novel biodegradable material to reduce emission of ammonia [Thesis]. Virginia Polytechnic Institute and State University. http://hdl.handle.net/10919/30949. Accessed 27 Oct 2017.

  • Amon, B., Kryvoruchko, V., Amon, T., & Zechmeister-Boltenstern, S. (2006). Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agriculture, Ecosystems & Environment, 112(2–3), 153–162. https://doi.org/10.1016/j.agee.2005.08.030.

    Article  CAS  Google Scholar 

  • ASTM International. (2013). ASTM E871-82 (2013), Standard test method for moisture analysis of particulate wood fuels. PA, U.S.A: West Conshohocken www.astm.org.

    Google Scholar 

  • ASTM International. (2015). ASTM D3663-03 (2015), Standard test method for surface area of catalysts and catalyst carriers. PA, U.S.A: West Conshohocken www.astm.org.

    Google Scholar 

  • ASTM International. (2016). ASTM D5373-16, Standard test methods for determination of carbon, hydrogen and nitrogen in analysis samples of coal and carbon in analysis samples of coal and coke. PA, U.S.A: West Conshohocken www.astm.org.

    Google Scholar 

  • Berg, W., Brunsch, R., & Pazsiczki, I. (2006). Greenhouse gas emissions from covered slurry compared with uncovered during storage. Agriculture, Ecosystems and Environment, 112(2–3), 129–134. https://doi.org/10.1016/j.agee.2005.08.031.

    Article  CAS  Google Scholar 

  • Borchard, N., Prost, K., Kautz, T., Moeller, A., & Siemens, J. (2012). Sorption of copper (II) and sulphate to different biochars before and after composting with farmyard manure. European Journal of Soil Science, 63(3), 399–409. https://doi.org/10.1111/j.1365-2389.2012.01446.x.

    Article  Google Scholar 

  • Cheng, C. H., & Lehmann, J. (2009). Ageing of black carbon along a temperature gradient. Chemosphere, 75(8), 1021–1027. https://doi.org/10.1016/j.chemosphere.2009.01.045.

    Article  CAS  Google Scholar 

  • Christensen, M. L., Christensen, K. V, & Sommer, S. G. (2013). Solid-liquid separation of animal slurry. In S. G. Sommer, M. L. Christensen, T. Schmidt, & L. S. Jensen (Eds.), Animal manure recycling: treatment and management (First., pp. 105–130). Chichester: John Wiley & Sons, Ltd.

  • Clemens, J., Trimborn, M., Weiland, P., & Amon, B. (2006). Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agriculture, Ecosystems & Environment, 112(2–3), 171–177. https://doi.org/10.1016/j.agee.2005.08.016.

    Article  CAS  Google Scholar 

  • Crombie, K., Masek, O., Sohi, S. P., Brownsort, P., & Cross, A. (2013). The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy, 5(2), 122–131. https://doi.org/10.1111/gcbb.12030.

    Article  CAS  Google Scholar 

  • Ding, Y., Liu, Y.-X., Wu, W.-X., Shi, D.-Z., Yang, M., & Zhong, Z.-K. (2010). Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water, Air, & Soil Pollution, 213(1–4), 47–55. https://doi.org/10.1007/s11270-010-0366-4.

    Article  CAS  Google Scholar 

  • Gai, X., Wang, H., Liu, J., Zhai, L., Liu, S., Ren, T., & Liu, H. (2014). Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS One, 9(12), e113888. https://doi.org/10.1371/journal.pone.0113888.

    Article  Google Scholar 

  • Guarino, M., Fabbri, C., Brambilla, M., Valli, L., & Navarotto, P. (2006). Evaluation of simplified covering systems to reduce gaseous emissions from livestock manure storage. Transactions of the ASABE, 49(3), 737–748.

    Article  CAS  Google Scholar 

  • Hale, S. E., Alling, V., Martinsen, V., Mulder, J., Breedveld, G. D., & Cornelissen, G. (2013). The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere, 91(11), 1612–1619. https://doi.org/10.1016/j.chemosphere.2012.12.057.

    Article  CAS  Google Scholar 

  • Holly, M. A., Larson, R. A., Powell, J. M., Ruark, M. D., & Aguirre-Villegas, H. (2017). Greenhouse gas and ammonia emissions from digested and separated dairy manure during storage and after land application. Agriculture, Ecosystems and Environment, 239, 410–419. https://doi.org/10.1016/j.agee.2017.02.007.

  • Hou, Y., Velthof, G. L., & Oenema, O. (2015). Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: A meta-analysis and integrated assessment. Global Change Biology, 21(3), 1293–1312. https://doi.org/10.1111/gcb.12767.

    Article  Google Scholar 

  • Ippolito, J. A., Spokas, K. A., Novak, J. M., Lentz, R. D., & Cantrell, K. B. (2015). Biochar elemental composition and factors influencing nutrient retention. In Biochar for environmental management: science, technology and implementation (pp. 139–165).

  • Lam, P. S., Sokhansanj, S., Bi, X., Lim, C. J., & Melin, S. (2011). Energy input and quality of pellets made from steam-exploded douglas fir (Pseudotsuga menziesii). Energy and Fuels, 25(4), 1521–1528. https://doi.org/10.1021/ef101683s.

    Article  CAS  Google Scholar 

  • Lin, Y., Munroe, P., Joseph, S., Henderson, R., & Ziolkowski, A. (2012). Water extractable organic carbon in untreated and chemical treated biochars. Chemosphere, 87(2), 151–157. https://doi.org/10.1016/j.chemosphere.2011.12.007.

    Article  CAS  Google Scholar 

  • Malińska, K., Zabochnicka-Świątek, M., & Dach, J. (2014). Effects of biochar amendment on ammonia emission during composting of sewage sludge. Ecological Engineering, 71, 474–478. https://doi.org/10.1016/j.ecoleng.2014.07.012.

    Article  Google Scholar 

  • Mohan, D., Kumar, S., & Srivastava, A. (2014). Fluoride removal from ground water using magnetic and nonmagnetic corn stover biochars. Ecological Engineering, 73, 798–808. https://doi.org/10.1016/j.ecoleng.2014.08.017.

    Article  Google Scholar 

  • Nelissen, V., Rütting, T., Huygens, D., Staelens, J., Ruysschaert, G., & Boeckx, P. (2012). Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil. Soil Biology and Biochemistry, 55, 20–27. https://doi.org/10.1016/j.soilbio.2012.05.019.

    Article  CAS  Google Scholar 

  • Nicolai, R., Pohl, S., & Schmidt, D. (2004). Covers for manure storage units. South Dakota Cooperative Extension Service Publication. pubstorage.sdstate.edu/AgBio_Publications/articles/FS925-D.pdf. Accessed 27 Oct 2017.

  • Paulot, F., Jacob, D. J., Pinder, R. W., Bash, J. O., Travis, K., & Henze, D. K. (2014). Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (MASAGE-NH3). Journal of Geophysical Research: Atmospheres, 119(7), 4343–4364. https://doi.org/10.1002/2013JD021130.

    CAS  Google Scholar 

  • Peters, J., Combs, S., Hoskins, B., Jarman, J., Kovar, J., Watson, M., et al. (2003). Recommended Methods of Manure Analysis (A3769). http://learningstore.uwex.edu/assets/pdfs/A3769.pdf. Accessed 27 Oct 2017.

  • Rajkovich, S., Enders, A., Hanley, K., Hyland, C., & Zimmerman, A. R. (2012). Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils, 48, 271–284. https://doi.org/10.1007/s00374-011-0624-7.

    Article  CAS  Google Scholar 

  • Sika, M. P., & Hardie, A. G. (2014). Effect of pine wood biochar on ammonium nitrate leaching and availability in a South African sandy soil. European Journal of Soil Science, 65(1), 113–119. https://doi.org/10.1111/ejss.12082.

    Article  CAS  Google Scholar 

  • Smith, K., Cumby, T., Lapworth, J., Misselbrook, T., & Williams, A. (2007). Natural crusting of slurry storage as an abatement measure for ammonia emissions on dairy farms. Biosystems Engineering, 97(4), 464–471. https://doi.org/10.1016/j.biosystemseng.2007.03.037.

    Article  Google Scholar 

  • Sommer, S. G., Christensen, B. T., Nielsen, N. E., & Schjφrring, J. K. (1993). Ammonia volatilization during storage of cattle and pig slurry: effect of surface cover. The Journal of Agricultural Science, 121(1), 63. https://doi.org/10.1017/S0021859600076802.

    Article  CAS  Google Scholar 

  • Spokas, K. A., Cantrell, K. B., Novak, J. M., Archer, D. W., Ippolito, J. A., Collins, H. P., et al. (2012a). Biochar: a synthesis of its agronomic impact beyond carbon sequestration. Journal of Environment Quality, 41(4), 973. https://doi.org/10.2134/jeq2011.0069.

    Article  CAS  Google Scholar 

  • Spokas, K. A., Novak, J. M., & Venterea, R. T. (2012b). Biochar’s role as an alternative N-fertilizer: ammonia capture. Plant and Soil, 350(1–2), 35–42. https://doi.org/10.1007/s11104-011-0930-8.

    Article  CAS  Google Scholar 

  • Taghizadeh-Toosi, A., Clough, T. J., Sherlock, R. R., & Condron, L. M. (2012a). A wood based low-temperature biochar captures NH3-N generated from ruminant urine-N, retaining its bioavailability. Plant and Soil, 353(1–2), 73–84. https://doi.org/10.1007/s11104-011-1010-9.

    Article  CAS  Google Scholar 

  • Taghizadeh-Toosi, A., Clough, T. J., Sherlock, R. R., & Condron, L. M. (2012b). Biochar adsorbed ammonia is bioavailable. Plant and Soil, 350(1–2), 57–69. https://doi.org/10.1007/s11104-011-0870-3.

    Article  CAS  Google Scholar 

  • Theuretzbacher, F., Lizasoain, J., Lefever, C., Saylor, M. K., Enguidanos, R., Weran, N., et al. (2015). Steam explosion pretreatment of wheat straw to improve methane yields: investigation of the degradation kinetics of structural compounds during anaerobic digestion. Bioresource Technology, 179, 299–305. https://doi.org/10.1016/j.biortech.2014.12.008.

    Article  CAS  Google Scholar 

  • Uludag-Demirer, S., Demirer, G. N., Frear, C., & Chen, S. (2008). Anaerobic digestion of dairy manure with enhanced ammonia removal. Journal of Environmental Management, 86(1), 193–200. https://doi.org/10.1016/j.jenvman.2006.12.002.

    Article  CAS  Google Scholar 

  • USEPA. (1983). Methods of chemical analysis of water and waste, Section 9.3. Cincinnati: EPA/600/4-79/020.

  • VanderZaag, A. C., Gordon, R. J., Glass, V. M., & Jamieson, R. C. (2008). Floating covers to reduce gas emissions from liquid manure storages: a review. American Society of Agricultural and Biological Engineers, 24(5), 657–672.

    Google Scholar 

  • VanderZaag, A. C., Gordon, R. J., Jamieson, R. C., Burton, D. L., & Stratton, G. W. (2009). Gas emissions from straw covered liquid dairy manure during summer storage and autumn agitation. Transactions of the ASABE, 52(2), 599–608.

    Article  CAS  Google Scholar 

  • Wang, B., Lehmann, J., Hanley, K., Hestrin, R., & Enders, A. (2015). Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH. Chemosphere, 138, 120–126. https://doi.org/10.1016/j.chemosphere.2015.05.062.

    Article  CAS  Google Scholar 

  • Webb, J., Menzi, H., Pain, B. F., Misselbrook, T. H., Dammgen, U., Hendriks, H., & Dohler, H. (2005). Managing ammonia emissions from livestock production in Europe. Environmental Pollution, 135(3 SPEC. ISS), 399–406. https://doi.org/10.1016/j.envpol.2004.11.013.

    Article  CAS  Google Scholar 

  • WHO. (2005). Ambient (outdoor) air quality and health. Fact sheets. World Health Organization. http://www.who.int/mediacentre/factsheets/fs313/en/. Accessed 14 Aug 2016.

  • Zhao, X., Wang, S., & Xing, G. (2014). Nitrification, acidification, and nitrogen leaching from subtropical cropland soils as affected by rice straw-based biochar: Laboratory incubation and column leaching studies. Journal of Soils and Sediments, 14(3), 471–482. https://doi.org/10.1007/s11368-013-0803-2.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, under award number 2015-67019-23573. We would like to thank Dr. Troy Runge for his help with the acquisition of materials and help with biomass processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Holly.

Ethics declarations

Ethic Statement

Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) ansd do not necessarily reflect the view of the U.S. Department of Agriculture.

Electronic supplementary materials

ESM 1

(PDF 22 kb)

ESM 2

(PDF 289 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holly, M.A., Larson, R.A. Thermochemical Conversion of Biomass Storage Covers to Reduce Ammonia Emissions from Dairy Manure. Water Air Soil Pollut 228, 434 (2017). https://doi.org/10.1007/s11270-017-3588-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3588-x

Keywords

Navigation