Skip to main content

Phenol Biodegradation by Pseudomonas putida in an Airlift Reactor: Assessment of Kinetic, Hydrodynamic, and Mass Transfer Parameters


An airlift biofilm reactor was employed to study phenol biodegradation by Pseudomonas putida. Hydrodynamic tests were also conducted in a conventional column to facilitate the comparison of the dynamic behavior in different types of columns. The three-phase airlift column offered better aeration than the conventional column as liquid and solid circulation in the downcomer favored bubble breakup, increasing oxygen dissolved in the liquid phase and favoring the phenol biodegradation process. Kinetic parameters of phenol biodegradation by P. putida were obtained in an agitated batch reactor, with the initial phenol concentration varying from 10 to 750 mg/L. Experimental data were fitted using different microbial growth models found in literature. The Yano and Koga model, which considers the formation of multiple inactive enzyme–substrate complexes, fitted well with our experimental data, with a correlation coefficient, R 2 = 0.952. An internal loop airlift bioreactor was used for aerobic phenol biodegradation in which polystyrene particles were utilized to support biomass immobilization. Several tests were performed by varying the influent phenol concentration, hydraulic retention time, upstream flow, and superficial air velocity. It was concluded that until an influent phenol concentration of approximately 300 mg/L, phenol acted as the limiting substrate. For higher phenol concentrations, oxygen became the limiting substrate. An increase in the oxygen concentration resulted in the complete consumption of phenol under high phenol concentration of 500 mg/L.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


A :

cross-sectional area (m2)

C * :

saturated concentration of dissolved oxygen (mg O2/L)

C DO :

dissolved oxygen concentration (mg O2/L)

C l :

bulk concentration of dissolved oxygen (mg O2/L)

C 0 :

initial concentration of oxygen (mg O2/L)

C phenol :

phenol concentration (mg/L)

C O2 dissolved :

dissolved oxygen concentration (mg O2/L)

D C :

column diameter (m)

g :

gravity (m/s2).

H :

effective bed height (m)

H C :

column height (m)

H LA :

liquid level (m)

K i :

substrate inhibition constant (–)

K La:

volumetric gas–liquid mass transfer coefficient (s−1)

K s :

half saturation constant (mg/L)

K 1, K 2 :

substrate inhibition models constants (mg/L)

M s :

mass of solid particles (kg)

m, n :

substrate inhibition models constants (–)

R 2 :

correlation coefficient (–)

S :

substrate concentration (mg/L)

S m :

substrate concentration correspondent to the maximum specific growth rate (mg/L)

S * :

substrate inhibition models constant (mg/L)

t :

time (h)

t g :

generation time (h)

μ g :

superficial gas velocity (cm/s).

μ g * :

dimensionless gas velocity (–).

u l :

superficial liquid velocity (cm/s)

X :

dry cell concentration (g/L)

ε :

bed porosity (–)

ε g :

gas holdup (–)

ε g * :

relative gas holdup (–)

ε l :

liquid holdup (–)

μ :

specific growth rate of cells (h−1)

μ max :

maximum specific growth rate (h−1)

ρ g :

density of the gas phase (kg/m3)

ρ l :

density of the liquid phase (kg/m3)

ρ s :

density of the solid particles (kg/m3)


chemical oxygen demand


dissolved oxygen


hydraulic retention time


optical density


root-mean-square error


  • Aiba, S., Shoda, M., & Nagatami, M. (1968). Kinetics of product inhibition in alcohol fermentation. Biotechnology and Bioengineering, 10, 845–864.

    Article  CAS  Google Scholar 

  • Amorim, E. L. C., Sader, L. T., & Silva, E. L. (2015). Effects of the organic-loading rate on the performance of an anaerobic fluidized-bed reactor treating synthetic wastewater containing phenol. Journal of Environmental Engineering, 141(10), 04015022-1–04015022-9.

    Article  Google Scholar 

  • APHA. (1998). Standard methods for the examination for water and wastewater (20th ed.). Washington, DC: American Public Health Association/American Water Works Association/Water Environmental Federation.

    Google Scholar 

  • Basak, B., Bhunia, B., Dutta, S., Chakraborty, S., & Dey, A. (2014). Kinetics of phenol biodegradation at high concentration by a metabolically versatile isolated yeast Candida tropicalis PHB5. Environmental Science and Pollution Research, 21, 1444–1454.

    Article  CAS  Google Scholar 

  • Begum, S. S., & Radha, K. V. (2013). Biodegradation kinetic studies on phenol in internal draft tube (inverse fluidized bed) biofilm reactor using Pseudomonas fluorescens: performance evaluation of biofilm and biomass characteristics. Bioremediation Journal, 17(4), 264–277.

    Article  CAS  Google Scholar 

  • Begum, S. S., & Radha, K. V. (2014). Hydrodynamic behavior of inverse fluidized bed biofilm reactor for phenol biodegradation using Pseudomonas fluorescens. Korean Journal of Chemical Engineering, 31(3), 436–445.

    Article  Google Scholar 

  • Borighem, G., & Vereecken, J. (1981). Model of a chemostat utilizing phenol as inhibitory substrate. Ecological Modelling, 12, 231–243.

    Article  CAS  Google Scholar 

  • Briggs, G. E., & Haldane, J. B. (1925). A note on the kinetics of enzyme action. The Biochemical Journal, 19(2), 338–339.

    Article  CAS  Google Scholar 

  • Chung, T.-P., Tseng, H.-Y., & Juang, R.-S. (2003). Mass transfer effect and intermediate detection for phenol degradation in immobilized Pseudomonas putida systems. Process Biochemistry, 38, 1497–1507.

    Article  CAS  Google Scholar 

  • Combarros, R. G., Rosas, I., Lavín, A. G., Rendueles, M., & Díaz, M. (2014). Influence of biofilm on activated carbon on the adsorption and biodegradation of salicylic acid in wastewater. Water, Air, & Soil Pollution, 225, 1858–1869.

    Article  Google Scholar 

  • CONAMA’s Resolution N° 430 (2011). “Dispõe sobre as condições e padrões de lançamento de efluentes, complementa e altera a Resolução no 357, de 17 de março de 2005, do Conselho Nacional do Meio Ambiente-CONAMA.”

  • Dapaals, S. Y., & Hill, G. A. (1992). Biodegradation of chlorophenol mixtures by Pseudomonas putida. Biotechnology and Bioengineering, 40, 1353–1358.

    Article  Google Scholar 

  • Dash, R. R., Gaur, A., & Balomajumder, C. (2009). Cyanide in industrial wastewaters and its removal: a review on biotreatment. Journal of Hazardous Materials, 163, 1–11.

    Article  Google Scholar 

  • Deckwer, W.-D., Louisi, Y., Zaidi, A., & Ralek, M. (1980). Hydrodynamic properties of the Fisher-Tropsch slurry process. Industrial & Engineering Chemistry Process Design and Development, 19(4), 699–708.

    Article  CAS  Google Scholar 

  • Dey, S., & Mukherjee, S. (2010). Kinetic studies for an aerobic packed bed biofilm reactor for treatment of organic wastewater with and without phenol. Journal of Water Resource and Protection, 2, 731–738.

    Article  CAS  Google Scholar 

  • Edwards, V. H. (1970). The influence of high substrate concentrations on microbial kinetics. Biotechnology and Bioengineering, 7, 679–712.

    Article  Google Scholar 

  • González, G., Herrera, M. G., García, M. T., & Peña, M. M. (2001). Biodegradation of phenol in a continuous process: comparative study of stirred tank and fluidized-bed bioreactors. Bioresource Technology, 76, 245–251.

    Article  Google Scholar 

  • Han, K., & Levenspiel, O. (1988). Extended Monod kinetics for substrate, product, and cell inhibition. Biotechnology and Bioengineering, 32, 430–437.

    Article  CAS  Google Scholar 

  • Heijnen, J. J., Hols, J., van der Lans, R. G. J. M., van Leeuwen, H. L. J. M., Mulder, A., & Weltevrede, R. (1997). A simple hydrodynamic model for the liquid circulation velocity in a full-scale two- and three-phase internal airlift reactor operating in the gas recirculation regime. Chemical Engineering Science, 52(15), 2527–2540.

    Article  CAS  Google Scholar 

  • Hirata, A., Hosaka, Y., & Umezawa, H. (1990). Characteristics of simultaneous utilization of oxygen and substrate in a three-phase fluidized bed bioreactor. Journal of Chemical Engineering of Japan, 23(3), 303–307.

    Article  CAS  Google Scholar 

  • Ismail, Z. Z., & Khudhair, H. A. (2015). Recycling of immobilized cells for aerobic biodegradation of phenol in a fluidized bed bioreactor. Systemics, Cybernetics and Informatics, 13(5), 81–86.

    Google Scholar 

  • Jalilnejad, E., & Vahabzadeh, F. (2014). Use of packed-bed airlift reactor with net draft tube to study kinetics of naphthalene degradation by Ralstonia eutropha. Environmental Science and Pollution Research, 21, 4592–4604.

    Article  CAS  Google Scholar 

  • Kantarci, N., Borak, F., & Ulgen, K. O. (2005). Bubble column reactors. Process Biochemistry, 40, 2263–2283.

    Article  CAS  Google Scholar 

  • Karamanev, D. G., Nagamune, T., & Endo, I. (1992). Hydrodynamic and mass transfer study of a gas–liquid–solid draft tube spouted bed bioreactor. Chemical Engineering Science, 47(13/14), 3581–3588.

    Article  CAS  Google Scholar 

  • Kato, Y., Aki, N. A., Fukuda, T., & Tanaka, S. (1972). The behavior of suspended particles and liquid in bubble columns. Journal of Chemical Engineering of Japan, 5(2), 112–118.

    Article  CAS  Google Scholar 

  • Kawagoe, K., Inoue, T., Nakao, K., & Otake, T. (1976). Flow-pattern and gas holdup conditions in gas-sparged contactors. International Journal of Chemical Engineering, 16, 176–183.

    Google Scholar 

  • Kim, S. D., Baker, C. G. J., & Bergougnou, M. A. (1975). Phase holdup characteristics of three phase fluidized beds. The Canadian Journal of Chemical Engineering, 53, 134–139.

    Article  CAS  Google Scholar 

  • Kishore, K. A., & Reddy, G. V. (2012). Studies on phenol biodegradation rates in waste water treatment by draft tube fluidized bed bioreactor. International Journal of Chemical Sciences and Applications, 3(2), 249–253.

    Google Scholar 

  • Kotturi, G., Robinson, C. W., & Inniss, W. E. (1991). Phenol degradation by a psychrotrophic strain of Pseudomonas putida. Applied Microbiology and Biotechnology, 34, 539–543.

    Article  CAS  Google Scholar 

  • Kumar, A., Kumar, S., & Kumar, S. (2005). Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194. Biochemical Engineering Journal, 22, 151–159.

    Article  CAS  Google Scholar 

  • Li, H., & Prakash, A. (1997). Heat transfer and hydrodynamics in a three-phase slurry bubble column. Industrial & Engineering Chemistry Research, 36(11), 4688–4694.

    Article  CAS  Google Scholar 

  • Li, Y., Li, J., Wang, C., & Wang, P. (2010). Growth kinetics and phenol biodegradation of psychrotrophic Pseudomonas putida LY1. Bio/Technology, 101, 6740–6744.

    CAS  Google Scholar 

  • Livingston, A. G., & Chase, H. A. (1989). Modeling phenol degradation in a fluidized-bed bioreactor. AICHE Journal, 35(12), 1980–1992.

    Article  CAS  Google Scholar 

  • Luong, J. H. T. (1987). Generalization of Monod kinetics for substrate, product, and cell inhibition. Biotechnology and Bioengineering, 32, 242–248.

    Article  Google Scholar 

  • Monod, J. (1949). The growth of bacterial cultures. Annual Review of Microbiology, 3(1), 371–394.

    Article  CAS  Google Scholar 

  • Monteiro, A. A. M. G., Boaventura, R. A. R., & Rodrigues, A. E. (2000). Phenol biodegradation by Pseudomonas putida DSM 548 in a batch reactor. Biochemical Engineering Journal, 6, 45–49.

    Article  CAS  Google Scholar 

  • Mordocco, A., Kuek, C., & Jenkins, R. (1999). Continuous degradation of phenol at low concentration using immobilized Pseudomonas putida. Enzyme and Microbial Technology, 25, 530–536.

    Article  CAS  Google Scholar 

  • Ranjbar, S., Aghtaei, H. K., Jalilnejad, E., & Vahabzadeh, F. (2016). Application of an airlift reactor with a net draft tube in phenol bio-oxidation using Ralstonia eutropha. Desalinization and Water Treatment, 57, 1–13.

    Google Scholar 

  • Rozich, A. F. & Gaudy, A. F. Jr. (1986). Process technology for the biological treatment of toxic organic wastes. Hazardous and Industrial Solid Waste Testing and Disposal: Sixth Volume. ASTM STP 933, D.

  • Sathya, R., Rasi, M., & Rajendran, L. (2015). Non-linear analysis of Haldane kinetic model in phenol degradation in batch operations. Kinetics and Catalysis, 56(2), 141–146.

    Article  CAS  Google Scholar 

  • Shah, Y. T., Kelkar, B. G., Godbole, S. P., & Deckwer, W.-D. (1982). Design parameters estimations for bubble column reactors. AICHE Journal, 28(3), 353–379.

    Article  CAS  Google Scholar 

  • Sedighi, M., & Vahabzadeh, F. (2014). Kinetic modeling of cometabolic degradation of ethanethiol and phenol by Ralstonia eutropha. Biotechnology and Bioprocess Engineering, 19, 239–249.

    Article  CAS  Google Scholar 

  • Silva, E. L. (1995). Aerobic treatment of phenol in three-phase fluidized bed reactor. Ph.D. thesis. Department of Hydraulic and Sanitation—University of São Paulo, São Carlos, Brazil (in Portuguese).

  • Singh, N., & Balomajumder, C. (2016). Simultaneous biosorption and bioaccumulation of phenol and cyanide using coconut shell activated carbon immobilized Pseudomonas putida (MTCC 1194). Journal of Environmental Chemical Engineering, 4, 1604–1614.

    Article  CAS  Google Scholar 

  • Tang, W.-T., & Fan, L.-S. (1987). Steady state phenol degradation in a draft-tube, gas–liquid–solid fluidized-bed bioreactor. AICHE Journal, 33(2), 240–249.

    Article  Google Scholar 

  • Tziotzios, G., Teliou, M., Kaltsouni, V., Lyberatos, G., & Vayenas, D. V. (2005). Biological phenol removal using suspended growth and packed bed reactors. Biochemical Engineering Journal, 26(1), 65–71.

    Article  CAS  Google Scholar 

  • Ucun, H., Yildiz, E., & Nuhoglu, A. (2010). Phenol biodegradation in a batch jet loop bioreactor (JLB): kinetics study and pH variation. Bio/Technology, 101, 2965–2971.

    CAS  Google Scholar 

  • Vasalos, A. I., Bild, E. M., Rundell, D. N., & Tatterson, D. F. (1980). Experimental techniques for studying fluid dynamics of H-coal reactor. Coal Processing Technology, 6, 226–228.

    CAS  Google Scholar 

  • Viggiani, A., Olivieri, G., Siani, L., Di Donato, A., Marzocchella, A., Salatino, P., Barbieri, P., & Galli, E. (2006). An airlift reactor for the biodegradation of phenol by Pseudomonas stutzeri OX1. Journal of Biotechnology, 123, 464–477.

    Article  CAS  Google Scholar 

  • Wang, S. J., & Loh, K. C. (1999). Modeling the role of metabolic intermediates in kinetics of phenol biodegradation. Enzyme and Microbial Technology, 25, 177–184.

    Article  Google Scholar 

  • Wolski, E. A., Durruty, I., Haure, P. M., & González, J. F. (2012). Penicillium chrysogenum: phenol degradation abilities and kinetic model. Water, Air, & Soil Pollution, 223, 2323–2332.

    Article  CAS  Google Scholar 

  • Yamane, T. (1967). Statistics—an introductory analysis. New York: Harper and Brown.

    Google Scholar 

  • Yano, T., & Koga, S. (1969). Dynamic behaviour of the chemostat subject to substrate inhibition. Biotechnology and Bioengineering, 11, 139–153.

    Article  CAS  Google Scholar 

  • Ying, D. H., Givens, E. N., & Weimer, R. F. (1980). Gas holdup in gas–liquid and gas–liquid–solid flow reactors. Industrial & Engineering Chemistry Process Design and Development, 19(4), 635–638.

    Article  CAS  Google Scholar 

Download references


This work was supported by the CNPq—National Council for Scientific and Technological Development, CAPES—Coordination for the Improvement of Higher Education Personnel, and FAPESP—São Paulo Research Foundation.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Edson Luiz Silva.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertollo, F.B., Lopes, G.C. & Silva, E.L. Phenol Biodegradation by Pseudomonas putida in an Airlift Reactor: Assessment of Kinetic, Hydrodynamic, and Mass Transfer Parameters. Water Air Soil Pollut 228, 398 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: