Abstract
Biological organisms, used as test objects in pollution tests may be as good, or even more so, in detecting soil contamination, than chemical analyses. In this study, we used five bioassay methods, together chemical and physical-chemical tests, for comprehensive environmental assessment of contaminated soils located at the industrial waste storage sites in North-West Russia. Examined soils have been contaminated with various toxic pollutants at various times in the past. The level of contamination by Hg, Pb, Cd, Zn, Со, As, Cr, Cu, Mn, V, and As in studied soils varied depending on a site type. The concentrations of these elements were 20 to 43 times higher than the regional geochemical baseline at all sites. The organic pollutants (3,4-benzo(a)pyrene and polychlorinated biphenyls) were found at some sites. Ecotoxicological studies were carried out using test organisms from different taxonomic groups: ciliates Paramecium caudatum Ehrenberg, green algae Scenedesmus quadricauda (Turp.) Brebisson, seeds of common oat Avena sativa L.,wheat Triticum aestivum L., and a natural community of microorganisms. All the employed bioassays revealed some of the aspects of contamination, supported or supplemented each other’s estimates, and gave excellent performance at the sampling sites.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Ahtiainen, J., Valo, R., Järvinen, M., & Joutti, A. (2002). Microbial toxicity tests and chemical analysis as monitoring parameters at composting of creosote-contaminated soil. Ecotoxicology and Environmental Safety, 53, 323–329.
Alef, K. (1995). Soil respiration. In K. Alef & P. Nannipieri (Eds.), Methods in applied soil microbiology and biochemistry (pp. 214–219). London: Academic Press, Harcourt Brace & Company.
Alvarenga, P., Palma, P., de Varennes, A., & Cunha-Queda, A. C. (2012). A contribution towards the risk assessment of soils from the São Domingos Mine (Portugal): chemical, microbial and ecotoxicological indicators. Environmental Pollution, 161, 50–56.
Anderson, N.-H., Heinemeyer, O., & Weigel, H.-J. (2011). Changes in the fungal-to-bacterial respiratorial ratio and microbial biomass in agriculturally managed soils under free-air CO2 enrichment (FACE)—a six-year survey of field study. Soil Biology and Biochemistry, 43, 895–904.
Baran, A., Czech, T., & Wieczorek, J. (2014). Chemical properties and toxicity of soils contaminated by mining activity. Ecotoxicology, 23, 1234–1244.
Bardina, T. V., Chugunova, M. V., Pnd, L. P., & Bardina, V. I. (2014a). Biological assesment of city soils toxicity in soil—ecological monitoring. Ekology of Urban Areas, 2, 87–91 (in Russian).
Bardina, T. V., Chugunova, M. V., Kulibaba, V. V., & Bardina, V. I. (2014b). Evaluation of the ecological state of the past environmental damage objects soils with bio-testing methods. Regional environmental issues, 5, 37–42 (in Russian).
Bardina, T. V., Chugunova, M. V., Kulibaba, V. V., Bardina, V. I. The use of biological methods for control of soils at industrial waste landfill. International symposium: “Environmental and engineering aspects for sustainable living”. Hannover, 27–28 November 2014. Hannover, pp 26-27. ISBN 978-3-00-032886-2. ewg-board.eu/daten/euro-eco-2014 2014c.
Bardina, T. V., Kulibaba, V. V., Chugunova, M. V., & Bardina, V. I. (2016). Ecotoxicity diagnostics of soils of the past environmental damage industrial facilities with the help of the biotesting systems. Regional environmental issues, 2, 20–25 (in Russian).
Broos, K., Mertens, J., & Smolders, E. (2005). Toxicity of heavy metals in soil assessed with various soil microbial and plant growth assays: a comparative study. Environmental Toxicology and Chemistry, 24(3), 634–640.
Canna/Michaelidou, Nicolaou, A. S., Neopfytou, E., & Christodoulidou, M. (2000). The use of a battery of microbiotests as a tool for integrated pollution control: evaluation and perspectives in Cyprus. In G. Persoone, C. Janssen, & W. De Coen (Eds.), New microbiotests for routine toxicity screening and biomonitoring (Vol. 4, pp. 39–48). New York: Kluwer Academic/Plenum Publishers.
Chapman Dagnino, A., Seforzini, S., Dondviero, F., Fenoglio, S., Bona, E., Jensen, J., & Viarengo, A. A. (2008). Weight-of evidence approach for the integration of environmental triad data to assess ecological risk and biological vulnerability. Integrated Environmental Assessment and Manaement, 4, 314–326.
Eriksen, K. D. H. (1990). Cytosolic binding of Cd, Zn, and Ni in four polychaete species. Comparative Biochemistry and Physiology, 95, 111–115.
Feng, D., Teng, Y., Wang, J., & Wu, J. (2016). The combined effect of Cu, Zn and Pb on enzyme activities in soil from the vicinity of a wellhead protection area. Soil and Sediment Contamination: An International Journal, 25(3). doi:10.1080/15320383.2016.1130687.
Filenko, O. F. (2007). Biologicheskie metody v kontrole kachestva okruzhayuschej sredy. Ekologicheskie sistemy i pribory, 6, 18–20 (in Russian).
Filenko, O. F., Terekhova, V. A. (2016). Environmental purpose of bioassay: informative value and versatility. Biodiagnostics and assessment of environmental quality: approaches, methods, criteria and reference standards in ecotoxicology. Book of Abstracts of the International Symposium, October 25–28. Moscow, Russia, GEOS З:232–238.
Fomin, G. S., Fomin, A. G. (2001). Pochva. Control’ kachestva i ekologicheskoj bezopasnosti po mezhdunarodnym standartam (p. 305). Moscow: Handbook.
Foucault, Y., Durand, M.-J., Tack, K., Schreck, E., Geret, F., Leveque, T., Pradère, P., Goix, S., & Dumat, C. (2013). Use of ecotoxicity test and ecoscores to improve the management of polluted soils: case of a secondary lead smelter plant. Journal of Hazardous Materials, 246-247, 291–299.
van Gestel, C. A., van der Waarde, J. J., Derksen, J. G., van der Hoek, E. E., Veul, M. F., Bouwens, S., Rusch, B., Kronenburg, R., & Stokman, G. N. (2001). The use of acute and chronic bioassays to determine the ecological risk and bioremediation efficiency of oil-polluted soils. Environmental Toxicology and Chemistry, 20, 1438–1449.
GN 2.1.7.2041-06. (2006) predelno dopustimye koncentracii PDK himicheskih veshchestv v pochve. Moscow (in Russian)
GN 2.1.7.2511-09. (2009). orientirovochno-dopustimye koncentracii ODK himicheskih veshchestv v pochve. Moscow (in Russian)
Grigoriev, Y. S., Tyutkova, E. A. (2011). Method for measuring the acute toxicity of freshwater, waste water, soil-water extracts, sewage sludge and waste extracts to algae Scenedesmus (Scenedesmus quadricauda (TURP.) BREB.) (p. 32). Moscow (PND FT 14,1:2:4.17-2011K; FR.1.39.2011.097150) (in Russian).
Hu, Y., Liu, X., Bai, J., Shih, K., Zeng, E. Y., & Cheng, H. (2013). Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environmental Science and Pollution Research, 20, 6150–6159.
Isak, R. S., Parveen, R. S., Rafique, A. S., & Alamgir, A. S. (2013). Phytotoxic effects of heavy metals (Cr, cd, Mn and Zn) on wheat (Triticum aestivum L.) seed germination and seedlings growth in black cotton soil of Nanded, India. Research Journal of Chemical Science, 3(6), 14–23.
ISO 6341: 2012. (2012). Water quality determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera,Crustacea) acute toxicity test. London: British Standards Institution.
Kapelkina, L. P. (2013). Problems of the soil pollutants standartization, standardization and regulation of environmental and soils quality and land management. In S. A. Shoba, A. S. Yakovlev, & N. G. Rybalsky (Eds.), A corresponding member of the Russian Academy of Sciences (pp. 196–201). Moscow: NIA-Priroda.
Kapelkina, L. P., Bardina, T. V., Bakina, L. G., Chugunova, M. V., Gerasimov, A. O., Mayachkina, N. V., Galdiyants, A. A. (2009). Metodika vypolneniya izmerenij vskhozhesti semyan i dliny kornej prorostkov vysshikh rastenij dlya opredeleniya toksichnosti tekhnogenno zagryaznennykh pochv. FR.1.39.2006.02264 (p 19). Sankt-Peterburg (in Russian).
Linkov, I., Sattestrom, F. K., Kiker, G., Batchelor, C., Bridges, T., & Ferguson, E. (2006). From comparative risk assessment to multi-criteria decision analysis and adaptive management: recent development and applications. Environment International, 32, 1072–1093.
Lors, C., Ponge, J.-F., Aldaya, M. M., & Damidot, D. (2011). Comparison of solid and liquid-phase bioassays using ecoscores to assess contaminated soils. Environmental Pollution, 159, 2974–2981.
Manzo, M., Nicola, F. D., Picione, F. D. L., Maisto, G., & Alfani, A. (2008). Assessment of the effects of soil PAH accumulation by a battery of ecotoxicological tests. Chemosphere, 71, 1937–1944.
Matejczyk, M., Grazyna, A. P., Nałecz-Jawecki, G., Ulfig, K., & Markowska-Szczupak, A. (2011). Estimation of the environmental risk posed by landfills using chemical, microbiological and ecotoxicological testing of leachates. Chemosphere, 82, 1017–1023.
Maxam, G., Rila, J.-P., Dott, W., & Eisentraeger, A. (2000). Use bioassays for assessment of water-extractable ecotoxic potential of soil. Ecotoxicology and Environmental Safety, 45, 240–246.
Minkina, T. M., Motusova, G. V., Nazarenko, O. G., & Mandzhieva, S. S. (2010). Heavy metal compounds in soil: transformation upon soil pollution and ecological significance (p. 188). New York: Nova Science Publishers, Inc.
MR. (2007). (Obosnovanie klassa opasnosti otkhodov proizvodstva i potrebleniya po fitotoksichnosti.) MR 2.1.7.2297–07. Moscow: Federal'nyj centr gigieny i ehpidemiologii Rospotrebnadzora, 2008 (in Russian).
Olkova, A. S. (2014). Biotestirovanie v nauchno-issledovatelskoj i prirodookhrannoj praktike Rossii. Uspekhi sovremenno jbiologii, 134(6), 614–622 (in Russian).
PND. (2010). Metodika opredeleniya toksichnosti prob pochv, donnykh otlozhenij i osadkov stochnykh vod ekspress-metodom s primeneniem pribora "Biotester". (FR.1.31.2005.01882 (red.2010) i PND F T 16.2:2.2–98 (red. 2010). Saint-Petersburg: OOO «SPEKTR-M» (in Russian).
Ram, C., Pandey Praveen, K., & Archana, S. (2004). Comparative toxicological evaluation of untreated and treated tannery effluent with Nostoc muscorum L. (algal assay) and microtox bioassay. Environ. Monit. and. Assess., 95(1–3), 287–294.
Remon, E., Bouchardon, J.-L., Cornier, B., Guy, B., Leclerc, J.-C., & Faure, O. (2005). Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: implications in risk assessment and site restoration. Environmental Pollution, 137, 316–323.
Ribe, V., Auleniusa, E., Nehrenheima, M., Martellb, U., & Odlarea, M. (2012). Applying the triad method in a risk assessment and metal industry site. J. Hazardous Materials, 207–208, 15–20.
Saet, Y. U. U., Revich, B. A., Yanin, E. P., & Dr, I. (1990). Geohimiya okruzhayushchej sredy (p. 335). Moscow: Nedra (in Russian).
SANPIN (2003). (Sanitarno-epidemiologicheskie trebovaniya k kachestvu pochvy.) SANPIN 2.1.7.1287-03 (p. 19). Moscow: Federal'nyj centr gigieny I ehpidemiologii Rospotrebnadzora, 2005 (in Russian).
Saraev, A. K., Simakov, A. E., Pitulko, V. M., Kulibaba, V. V., Tokarev, I. V., & Tezkan, B. (2015). Use of new radiomagnetotelluric sounding technique for inventory and assessment of buried objects of past environmental damage in soils and groundwater. Regional Ecology, 1(36), 7–11 (in Russian).
Selivanovskaya, S. Y., & Galitskaya, P. Y. (2006). Otsenka toksichnosti pochv s ispolzovaniem kontaktnogo metoda biotestirovaniya. Toxicological Revien, 4, 12–15 (in Russian).
Smagin, A. V. (2013). A resource characterization of soil and its relation to standardization and regulation of environmental quality. In S. A. Shoba, A. S. Yakovlev, & N. G. Rybalsky (Eds.), A corresponding member of the Russian Academy of Sciences (pp. 61–81). Moscow: NIA-Priroda.
Solomon, K. R., Brock, T. C. M., De Zwart, D. et al. (2008). Extrapolation in the context of criteria setting and risk assessment. In Extrapolation Practice for ecotoxicological effect characterization of chemicals (pp. 1–32). SETAC Press & CRC Press, Boca Raton.
Terekhova, V. A. (2011). Soil bioassay: problems and approaches. Eurasian Soil Science, 44, 173–179.
Terekhova, V. A., Pukalchik, M. A., & Yakovlev, A. S. (2014). The triad approach to ecological assessment of urban soils. Eurasian Soil Science, 47(9), 952–958.
Terekhova, V. A., Voronina, L. P., Nikolaeva, O. V., Bardina, T. V., Kalmatskaya, O. A., Kiryushina, A. P., Uchanov, P. V., Kreslavskij, V. D., & Vasileva, G. K. (2016). Primenenie fitotestirovaniya dlya resheniya zadach ekologicheskogo pochvovedeniya. Bulletin «Use and protection of natural resources of Russia», 3, 37–41 (in Russian).
Vodyanitskii, Y. N. (2013). Contamination of soils with heavy metals and metalloids and its ecological hazard (analytic review). Eurasian Soil Science, 46, 793–801.
Voronich, S. S., Grebenkin, N. N., Royeva, N. N., Zaitsev, D. A., Baranov, A. N., Pakhomov, D. E., & Khlopayev, A. G. (2016). A modern concept of the system of ecological monitoring of the industrial regions of Russia. Regional environmental issues, 2, 14–19 (in Russian).
Wang, X., Sun, C., Gao, S., Wang, L., & Shuokui, H. (2001). Validation of germination rate and root elongation to assess phytotoxicity with Cucumissativus. Chemosphere, 44, 1711–1721.
Wolterbeek, H. T., & Verburg, T. G. (2001). Predicting metal toxicity revisited: general properties vs. specific effects. Sci Total Environ, 279, 87–115.
Yakovlev, A. S., & Evdokimova, M. V. (2011). Ecological standardization of soil and soil quality сontrol. Eurasian Soil Science, 44, 534–546.
Acknowledgements
The present study was supported by state research topic of SRCES RAS No. 012013600650.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Bardina, T.V., Chugunova, M.V., Kulibaba, V.V. et al. Applying Bioassay Methods for Ecological Assessment of the Soils from the Brownfield Sites. Water Air Soil Pollut 228, 351 (2017). https://doi.org/10.1007/s11270-017-3521-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11270-017-3521-3

