Skip to main content

Advertisement

Log in

Applying Bioassay Methods for Ecological Assessment of the Soils from the Brownfield Sites

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Biological organisms, used as test objects in pollution tests may be as good, or even more so, in detecting soil contamination, than chemical analyses. In this study, we used five bioassay methods, together chemical and physical-chemical tests, for comprehensive environmental assessment of contaminated soils located at the industrial waste storage sites in North-West Russia. Examined soils have been contaminated with various toxic pollutants at various times in the past. The level of contamination by Hg, Pb, Cd, Zn, Со, As, Cr, Cu, Mn, V, and As in studied soils varied depending on a site type. The concentrations of these elements were 20 to 43 times higher than the regional geochemical baseline at all sites. The organic pollutants (3,4-benzo(a)pyrene and polychlorinated biphenyls) were found at some sites. Ecotoxicological studies were carried out using test organisms from different taxonomic groups: ciliates Paramecium caudatum Ehrenberg, green algae Scenedesmus quadricauda (Turp.) Brebisson, seeds of common oat Avena sativa L.,wheat Triticum aestivum L., and a natural community of microorganisms. All the employed bioassays revealed some of the aspects of contamination, supported or supplemented each other’s estimates, and gave excellent performance at the sampling sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ahtiainen, J., Valo, R., Järvinen, M., & Joutti, A. (2002). Microbial toxicity tests and chemical analysis as monitoring parameters at composting of creosote-contaminated soil. Ecotoxicology and Environmental Safety, 53, 323–329.

    Article  CAS  Google Scholar 

  • Alef, K. (1995). Soil respiration. In K. Alef & P. Nannipieri (Eds.), Methods in applied soil microbiology and biochemistry (pp. 214–219). London: Academic Press, Harcourt Brace & Company.

    Google Scholar 

  • Alvarenga, P., Palma, P., de Varennes, A., & Cunha-Queda, A. C. (2012). A contribution towards the risk assessment of soils from the São Domingos Mine (Portugal): chemical, microbial and ecotoxicological indicators. Environmental Pollution, 161, 50–56.

    Article  CAS  Google Scholar 

  • Anderson, N.-H., Heinemeyer, O., & Weigel, H.-J. (2011). Changes in the fungal-to-bacterial respiratorial ratio and microbial biomass in agriculturally managed soils under free-air CO2 enrichment (FACE)—a six-year survey of field study. Soil Biology and Biochemistry, 43, 895–904.

    Article  CAS  Google Scholar 

  • Baran, A., Czech, T., & Wieczorek, J. (2014). Chemical properties and toxicity of soils contaminated by mining activity. Ecotoxicology, 23, 1234–1244.

    Article  Google Scholar 

  • Bardina, T. V., Chugunova, M. V., Pnd, L. P., & Bardina, V. I. (2014a). Biological assesment of city soils toxicity in soil—ecological monitoring. Ekology of Urban Areas, 2, 87–91 (in Russian).

    Google Scholar 

  • Bardina, T. V., Chugunova, M. V., Kulibaba, V. V., & Bardina, V. I. (2014b). Evaluation of the ecological state of the past environmental damage objects soils with bio-testing methods. Regional environmental issues, 5, 37–42 (in Russian).

    Google Scholar 

  • Bardina, T. V., Chugunova, M. V., Kulibaba, V. V., Bardina, V. I. The use of biological methods for control of soils at industrial waste landfill. International symposium: “Environmental and engineering aspects for sustainable living”. Hannover, 27–28 November 2014. Hannover, pp 26-27. ISBN 978-3-00-032886-2. ewg-board.eu/daten/euro-eco-2014 2014c.

  • Bardina, T. V., Kulibaba, V. V., Chugunova, M. V., & Bardina, V. I. (2016). Ecotoxicity diagnostics of soils of the past environmental damage industrial facilities with the help of the biotesting systems. Regional environmental issues, 2, 20–25 (in Russian).

    Google Scholar 

  • Broos, K., Mertens, J., & Smolders, E. (2005). Toxicity of heavy metals in soil assessed with various soil microbial and plant growth assays: a comparative study. Environmental Toxicology and Chemistry, 24(3), 634–640.

    Article  CAS  Google Scholar 

  • Canna/Michaelidou, Nicolaou, A. S., Neopfytou, E., & Christodoulidou, M. (2000). The use of a battery of microbiotests as a tool for integrated pollution control: evaluation and perspectives in Cyprus. In G. Persoone, C. Janssen, & W. De Coen (Eds.), New microbiotests for routine toxicity screening and biomonitoring (Vol. 4, pp. 39–48). New York: Kluwer Academic/Plenum Publishers.

    Chapter  Google Scholar 

  • Chapman Dagnino, A., Seforzini, S., Dondviero, F., Fenoglio, S., Bona, E., Jensen, J., & Viarengo, A. A. (2008). Weight-of evidence approach for the integration of environmental triad data to assess ecological risk and biological vulnerability. Integrated Environmental Assessment and Manaement, 4, 314–326.

    Article  Google Scholar 

  • Eriksen, K. D. H. (1990). Cytosolic binding of Cd, Zn, and Ni in four polychaete species. Comparative Biochemistry and Physiology, 95, 111–115.

    Google Scholar 

  • Feng, D., Teng, Y., Wang, J., & Wu, J. (2016). The combined effect of Cu, Zn and Pb on enzyme activities in soil from the vicinity of a wellhead protection area. Soil and Sediment Contamination: An International Journal, 25(3). doi:10.1080/15320383.2016.1130687.

  • Filenko, O. F. (2007). Biologicheskie metody v kontrole kachestva okruzhayuschej sredy. Ekologicheskie sistemy i pribory, 6, 18–20 (in Russian).

    Google Scholar 

  • Filenko, O. F., Terekhova, V. A. (2016). Environmental purpose of bioassay: informative value and versatility. Biodiagnostics and assessment of environmental quality: approaches, methods, criteria and reference standards in ecotoxicology. Book of Abstracts of the International Symposium, October 25–28. Moscow, Russia, GEOS З:232–238.

  • Fomin, G. S., Fomin, A. G. (2001). Pochva. Control’ kachestva i ekologicheskoj bezopasnosti po mezhdunarodnym standartam (p. 305). Moscow: Handbook.

  • Foucault, Y., Durand, M.-J., Tack, K., Schreck, E., Geret, F., Leveque, T., Pradère, P., Goix, S., & Dumat, C. (2013). Use of ecotoxicity test and ecoscores to improve the management of polluted soils: case of a secondary lead smelter plant. Journal of Hazardous Materials, 246-247, 291–299.

    Article  CAS  Google Scholar 

  • van Gestel, C. A., van der Waarde, J. J., Derksen, J. G., van der Hoek, E. E., Veul, M. F., Bouwens, S., Rusch, B., Kronenburg, R., & Stokman, G. N. (2001). The use of acute and chronic bioassays to determine the ecological risk and bioremediation efficiency of oil-polluted soils. Environmental Toxicology and Chemistry, 20, 1438–1449.

    Article  Google Scholar 

  • GN 2.1.7.2041-06. (2006) predelno dopustimye koncentracii PDK himicheskih veshchestv v pochve. Moscow (in Russian)

  • GN 2.1.7.2511-09. (2009). orientirovochno-dopustimye koncentracii ODK himicheskih veshchestv v pochve. Moscow (in Russian)

  • Grigoriev, Y. S., Tyutkova, E. A. (2011). Method for measuring the acute toxicity of freshwater, waste water, soil-water extracts, sewage sludge and waste extracts to algae Scenedesmus (Scenedesmus quadricauda (TURP.) BREB.) (p. 32). Moscow (PND FT 14,1:2:4.17-2011K; FR.1.39.2011.097150) (in Russian).

  • Hu, Y., Liu, X., Bai, J., Shih, K., Zeng, E. Y., & Cheng, H. (2013). Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environmental Science and Pollution Research, 20, 6150–6159.

    Article  CAS  Google Scholar 

  • Isak, R. S., Parveen, R. S., Rafique, A. S., & Alamgir, A. S. (2013). Phytotoxic effects of heavy metals (Cr, cd, Mn and Zn) on wheat (Triticum aestivum L.) seed germination and seedlings growth in black cotton soil of Nanded, India. Research Journal of Chemical Science, 3(6), 14–23.

    Google Scholar 

  • ISO 6341: 2012. (2012). Water quality determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera,Crustacea) acute toxicity test. London: British Standards Institution.

    Google Scholar 

  • Kapelkina, L. P. (2013). Problems of the soil pollutants standartization, standardization and regulation of environmental and soils quality and land management. In S. A. Shoba, A. S. Yakovlev, & N. G. Rybalsky (Eds.), A corresponding member of the Russian Academy of Sciences (pp. 196–201). Moscow: NIA-Priroda.

    Google Scholar 

  • Kapelkina, L. P., Bardina, T. V., Bakina, L. G., Chugunova, M. V., Gerasimov, A. O., Mayachkina, N. V., Galdiyants, A. A. (2009). Metodika vypolneniya izmerenij vskhozhesti semyan i dliny kornej prorostkov vysshikh rastenij dlya opredeleniya toksichnosti tekhnogenno zagryaznennykh pochv. FR.1.39.2006.02264 (p 19). Sankt-Peterburg (in Russian).

  • Linkov, I., Sattestrom, F. K., Kiker, G., Batchelor, C., Bridges, T., & Ferguson, E. (2006). From comparative risk assessment to multi-criteria decision analysis and adaptive management: recent development and applications. Environment International, 32, 1072–1093.

    Article  CAS  Google Scholar 

  • Lors, C., Ponge, J.-F., Aldaya, M. M., & Damidot, D. (2011). Comparison of solid and liquid-phase bioassays using ecoscores to assess contaminated soils. Environmental Pollution, 159, 2974–2981.

    Article  CAS  Google Scholar 

  • Manzo, M., Nicola, F. D., Picione, F. D. L., Maisto, G., & Alfani, A. (2008). Assessment of the effects of soil PAH accumulation by a battery of ecotoxicological tests. Chemosphere, 71, 1937–1944.

    Article  CAS  Google Scholar 

  • Matejczyk, M., Grazyna, A. P., Nałecz-Jawecki, G., Ulfig, K., & Markowska-Szczupak, A. (2011). Estimation of the environmental risk posed by landfills using chemical, microbiological and ecotoxicological testing of leachates. Chemosphere, 82, 1017–1023.

    Article  CAS  Google Scholar 

  • Maxam, G., Rila, J.-P., Dott, W., & Eisentraeger, A. (2000). Use bioassays for assessment of water-extractable ecotoxic potential of soil. Ecotoxicology and Environmental Safety, 45, 240–246.

    Article  CAS  Google Scholar 

  • Minkina, T. M., Motusova, G. V., Nazarenko, O. G., & Mandzhieva, S. S. (2010). Heavy metal compounds in soil: transformation upon soil pollution and ecological significance (p. 188). New York: Nova Science Publishers, Inc.

    Google Scholar 

  • MR. (2007). (Obosnovanie klassa opasnosti otkhodov proizvodstva i potrebleniya po fitotoksichnosti.) MR 2.1.7.2297–07. Moscow: Federal'nyj centr gigieny i ehpidemiologii Rospotrebnadzora, 2008 (in Russian).

  • Olkova, A. S. (2014). Biotestirovanie v nauchno-issledovatelskoj i prirodookhrannoj praktike Rossii. Uspekhi sovremenno jbiologii, 134(6), 614–622 (in Russian).

    Google Scholar 

  • PND. (2010). Metodika opredeleniya toksichnosti prob pochv, donnykh otlozhenij i osadkov stochnykh vod ekspress-metodom s primeneniem pribora "Biotester". (FR.1.31.2005.01882 (red.2010) i PND F T 16.2:2.2–98 (red. 2010). Saint-Petersburg: OOO «SPEKTR-M» (in Russian).

  • Ram, C., Pandey Praveen, K., & Archana, S. (2004). Comparative toxicological evaluation of untreated and treated tannery effluent with Nostoc muscorum L. (algal assay) and microtox bioassay. Environ. Monit. and. Assess., 95(1–3), 287–294.

    Google Scholar 

  • Remon, E., Bouchardon, J.-L., Cornier, B., Guy, B., Leclerc, J.-C., & Faure, O. (2005). Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: implications in risk assessment and site restoration. Environmental Pollution, 137, 316–323.

    Article  CAS  Google Scholar 

  • Ribe, V., Auleniusa, E., Nehrenheima, M., Martellb, U., & Odlarea, M. (2012). Applying the triad method in a risk assessment and metal industry site. J. Hazardous Materials, 207–208, 15–20.

    Article  Google Scholar 

  • Saet, Y. U. U., Revich, B. A., Yanin, E. P., & Dr, I. (1990). Geohimiya okruzhayushchej sredy (p. 335). Moscow: Nedra (in Russian).

    Google Scholar 

  • SANPIN (2003). (Sanitarno-epidemiologicheskie trebovaniya k kachestvu pochvy.) SANPIN 2.1.7.1287-03 (p. 19). Moscow: Federal'nyj centr gigieny I ehpidemiologii Rospotrebnadzora, 2005 (in Russian).

  • Saraev, A. K., Simakov, A. E., Pitulko, V. M., Kulibaba, V. V., Tokarev, I. V., & Tezkan, B. (2015). Use of new radiomagnetotelluric sounding technique for inventory and assessment of buried objects of past environmental damage in soils and groundwater. Regional Ecology, 1(36), 7–11 (in Russian).

    Google Scholar 

  • Selivanovskaya, S. Y., & Galitskaya, P. Y. (2006). Otsenka toksichnosti pochv s ispolzovaniem kontaktnogo metoda biotestirovaniya. Toxicological Revien, 4, 12–15 (in Russian).

    Google Scholar 

  • Smagin, A. V. (2013). A resource characterization of soil and its relation to standardization and regulation of environmental quality. In S. A. Shoba, A. S. Yakovlev, & N. G. Rybalsky (Eds.), A corresponding member of the Russian Academy of Sciences (pp. 61–81). Moscow: NIA-Priroda.

    Google Scholar 

  • Solomon, K. R., Brock, T. C. M., De Zwart, D. et al. (2008). Extrapolation in the context of criteria setting and risk assessment. In Extrapolation Practice for ecotoxicological effect characterization of chemicals (pp. 1–32). SETAC Press & CRC Press, Boca Raton.

  • Terekhova, V. A. (2011). Soil bioassay: problems and approaches. Eurasian Soil Science, 44, 173–179.

    Article  Google Scholar 

  • Terekhova, V. A., Pukalchik, M. A., & Yakovlev, A. S. (2014). The triad approach to ecological assessment of urban soils. Eurasian Soil Science, 47(9), 952–958.

    Article  Google Scholar 

  • Terekhova, V. A., Voronina, L. P., Nikolaeva, O. V., Bardina, T. V., Kalmatskaya, O. A., Kiryushina, A. P., Uchanov, P. V., Kreslavskij, V. D., & Vasileva, G. K. (2016). Primenenie fitotestirovaniya dlya resheniya zadach ekologicheskogo pochvovedeniya. Bulletin «Use and protection of natural resources of Russia», 3, 37–41 (in Russian).

    Google Scholar 

  • Vodyanitskii, Y. N. (2013). Contamination of soils with heavy metals and metalloids and its ecological hazard (analytic review). Eurasian Soil Science, 46, 793–801.

    Article  CAS  Google Scholar 

  • Voronich, S. S., Grebenkin, N. N., Royeva, N. N., Zaitsev, D. A., Baranov, A. N., Pakhomov, D. E., & Khlopayev, A. G. (2016). A modern concept of the system of ecological monitoring of the industrial regions of Russia. Regional environmental issues, 2, 14–19 (in Russian).

    Google Scholar 

  • Wang, X., Sun, C., Gao, S., Wang, L., & Shuokui, H. (2001). Validation of germination rate and root elongation to assess phytotoxicity with Cucumissativus. Chemosphere, 44, 1711–1721.

    Article  CAS  Google Scholar 

  • Wolterbeek, H. T., & Verburg, T. G. (2001). Predicting metal toxicity revisited: general properties vs. specific effects. Sci Total Environ, 279, 87–115.

    Article  CAS  Google Scholar 

  • Yakovlev, A. S., & Evdokimova, M. V. (2011). Ecological standardization of soil and soil quality сontrol. Eurasian Soil Science, 44, 534–546.

    Article  Google Scholar 

Download references

Acknowledgements

The present study was supported by state research topic of SRCES RAS No. 012013600650.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara V. Bardina.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bardina, T.V., Chugunova, M.V., Kulibaba, V.V. et al. Applying Bioassay Methods for Ecological Assessment of the Soils from the Brownfield Sites. Water Air Soil Pollut 228, 351 (2017). https://doi.org/10.1007/s11270-017-3521-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3521-3

Keywords