Water, Air, & Soil Pollution

, 228:333 | Cite as

Water Quality and Toxicological Impact Assessment Using the Nematode Caenorhabditis elegans Bioassay in a Long-Term Intensive Agricultural Area

  • Araceli Clavijo
  • Ariana Rossen
  • Daniel Calvo
  • María Florencia Kronberg
  • Aldana Moya
  • Eduardo Antonio Pagano
  • Eliana R. Munarriz


Due to intensive agricultural activities to meet the growing needs for food, large volumes of water are consumed and an increasing amount of agrochemicals are released into the environment threatening the aquatic ecosystem. In order to ensure a sustainable agricultural management, it is crucial to develop an integrated water assessment plan that includes not only water quantity and quality but also toxicological assessments. The Pergamino River basin (province of Buenos Aires, Argentina) was selected as a representative case of study to monitor and assess the impact of both the long-term intensification of soybean production and fast-growing urban development on surface and groundwater sources. Physicochemical analyses and a Water Quality Index were determined and showed that water quality falls into the marginal category, compromising the irrigation purposes and threatening aquatic life. Glyphosate and aminomethylphosphonic acid were detected at least once in all sites. Caenorhabditis elegans toxic bioassays were performed and a toxicological ranking was developed. This analysis proved to be useful to detect toxicity even when water parameters met regulatory requirements and water quality seemed to be satisfactory. This research constitutes a valuable model to be replicated in other river basins that have been impacted by intensive agriculture and growing urban development in order to assess water quality conditions and ensure sound water resources management.


Environmental toxicology Water characterization Glyphosate Agriculture Pergamino 



This study has been financially supported by the Argentina’s Ministry of Science, Technology and Productive Innovation through the National Agency for the Promotion of Science and Technology. These institutions awarded Dr. Munarriz (grants: PICT-PRH 2014/0002 and PICT 2014/3293) and Dr. Pagano (grant: ANPCyT-PID 0032/2011). We are especially grateful to Veronica Feuring, Alina Crelier, and Silvina Monti from the Biochemistry Department, Agronomy School of University of Buenos Aires, for their technical assistance. Also, we would like to thank Santiago Valdés, José Antonio Morábito, Priva Braunfeld, and Miryam Pikeris from the National Water Institute for critically reviewing the manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11270_2017_3512_MOESM1_ESM.docx (276 kb)
ESM 1 (DOCX 275 kb).


  1. ACUMAR, Autoridad de Cuenca Matanza-Riachuelo (Matanza-Riachuelo Basin Authority) (2009). Resolution N° 3/09: uses and objectives of water quality for protection of aquatic life (Usos y objetivos de calidad de aguas). Matanza-Riachuelo Basin Authority Act N° 26168. Ministry of the Environment and Sustainable Development of Argentina. Official Bulletin of Argentine Republic 26/05/2009.Google Scholar
  2. ADA, Autoridad Del Agua (Water authority) (2003). Resolution N° 336/03: acceptable discharge parameters (Parámetros de descarga admisibles). Provincial Water Code Act N° 12257 of the Water Authority. Ministry of Infrastructure and Public Services of the Province of Buenos Aires, Argentina. Official Bulletin of Buenos Aires Province 5/10/2003.Google Scholar
  3. ADA, Autoridad Del Agua (Water authority) (2006). Resolution N° 42/06. Freshwater protection of aquatic life (Calidad de aguas dulces para la protección de la biota acuática). Provincial Water Code Act N° 12257 of the Water Authority. Ministry of Infrastructure and Public Services of the Province of Buenos Aires, Argentina. Official Bulletin of Buenos Aires Province 27/01/2006.Google Scholar
  4. Alsheikh, A. A. (2015). Irrigation water quality evaluation of aldelam groundwater. Oriental Journal of Chemistry, 31(3), 1759–1766.CrossRefGoogle Scholar
  5. Anderson, C. P., & Leibold, E. A. (2014). Mechanisms of iron metabolism in Caenorhabditis elegans. Frontier in Pharmacology, 5, 113.Google Scholar
  6. Antonopoulos, V. Z., Papamichail, D. M., & Mitsiou, K. A. (2001). Statistical and trend analysis of water quality and quantity data for the Strymon river in Greece. Hydrology and Earth System Sciences Discussions, 5(4), 679–692.CrossRefGoogle Scholar
  7. Aparicio, V. C., De Gerónimo, E., Marino, D., Primost, J., Carriquiriborde, P., & Costa, J. L. (2013). Environmental fate of glyphosate and aminomethylphosphonicacid in surface waters and soil of agricultural basins. Chemosphere, 93(9), 1866–1873.CrossRefGoogle Scholar
  8. APHA, American Public Health Association. (2012). Standard methods for examination of water and wastewater (22nd ed.). Washington: Washington American Public Health Association.Google Scholar
  9. Arunakumara, K. K. I. U., Walpola, B. C., & Yoon, M. H. (2013). Metabolism and degradation of glyphosate in aquatic cyanobacteria: a review. African Journal of Microbiology Research, 7(32), 4084–4090.Google Scholar
  10. ASTM, American Society for Testing and Materials. (2014). E 2172-01 standard guide for conducting laboratory soil toxicity tests with the nematode Caenorhabditis elegans. Pennsylvania: American Society for Testing and Materials.Google Scholar
  11. Auge, M. (2004). Environmental hydrology (Hidrogeología ambiental). Buenos Aires: Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires.Google Scholar
  12. Auge, M. (2006). Underground water: damage in quality and reservation (Agua subterránea. Deterioro de calidad y reserva) (pp 1–169). Madrid: Ed. Red IRIS Red Académica y Científica de España.Google Scholar
  13. Battaglin, W. (2016). Glyphosate and other contaminants of concern in water, sediment, and soil in the United States. San Diego: In Plant and Animal Genome XXIV Conference.Google Scholar
  14. Bharti, N., & Katyal, D. (2011). Water quality indices used for surface water vulnerability assessment. International Journal of Environmental Science, 2(1), 154–173.Google Scholar
  15. Bhutiani, R., Khanna, D. R., Kulkarni, D. B., & Ruhela, M. (2016). Assessment of Ganga river ecosystem at Haridwar, Uttarakhand, India with reference to water quality indices. Applied Water Science, 6(2), 107–113.Google Scholar
  16. Boyd, W. A., Smith, M. V., Kissling, G. E., & Freedman, J. H. (2010). Medium- and high-throughput screening of neurotoxicants using C. elegans. Neurotoxicoly and Teratology, 32, 68–73.CrossRefGoogle Scholar
  17. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77, 71–94.Google Scholar
  18. Busse, M. D., Ratcliff, A. W., Shestak, C. J., & Powers, R. F. (2001). Glyphosate toxicity and the effects of long-term vegetation control on soil microbial communities. Soil Biology and Biochemistry, 33(12), 1777–1789.CrossRefGoogle Scholar
  19. CAA, Código Alimentario Argentino, (Argentine Food Code) (2007). Joint Resolution by the Secretariat for Health Policies, Regulation and Relations (SPRyRS N° 68/2007) and the Secretariat for Agriculture, Livestock Farming, Fisheries and Food (SAGPyA N° 196/2007). Argentine Food Code Act N° 18284. Ministry of Health of Argentina. Updated 10/2012.Google Scholar
  20. Cabrini, S. M., & Calcaterra, C. P. (2016). Modeling economic–environmental decision making for agricultural land use in Argentinean Pampas. Agricultural Systems, 143, 183–194.CrossRefGoogle Scholar
  21. CCME, Canadian Council of Ministers of the Environment (2001). Canadian water quality guidelines for the protection of aquatic life: Water Quality Index 1.0, user’s manual. In: Canadian environmental quality guidelines. Winnipeg: Canadian Council of Ministers of the Environment.Google Scholar
  22. Chen, P., Martinez-Finley, E. J., Bornhorst, J., Chakraborty, S., & Aschner, M. (2013). Metal-induced neurodegeneration in C. elegansFrontiers in Aging Neuroscience, 5, 18.Google Scholar
  23. Clavijo, A., Kronberg, M. F., Rossen, A., Moya, A., Calvo, D., Salatino, S. E., Pagano, E. A., Morábito, J. A., & Munarriz, E. R. (2016). The nematode Caenorhabditis elegans as an integrated toxicological tool to assess water quality and pollution. Science of the Total Environment, 569-570, 252–261.CrossRefGoogle Scholar
  24. Conover, W. J. (1980). Practical non-parametric statistics (2nd ed.). Minneapolis: Wiley.Google Scholar
  25. Coupe, R. H., Kalkhoff, S. J., Capel, P. D., & Gregoire, C. (2012). Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Management Science, 68, 16–30.CrossRefGoogle Scholar
  26. De Castro-Català, N., Muñoz, I., Armendáriz, L., Campos, B., Barceló, D., López-Doval, J., Pérez, S., Petrovic, M., Picó, Y., & Riera, J. L. (2015). Invertebrate community responses to emerging water pollutants in Iberian river basins. Science of the Total Environment, 503-504, 142–150.CrossRefGoogle Scholar
  27. Deluchi, M., Kruse, E., Laurencena, P., Rojo, A., & Rodrigues Capítulo, L. (2010). Operating characteristics of groundwater in an area north east of the province of Buenos Aires, Argentina. (Características de la explotación de aguas subterráneas en un sector del noreste de la provincia de Buenos Aires, Argentina). X Congreso ALHSUD. Aguas Subterráneas y Desarrollo Sustentable de los Pueblos Latinoamericanos, Caracas, Venezuela.Google Scholar
  28. Ferraris, I. A. G., & Couretot, L. (2007). New production strategies to achieve potential yields in soybeans (Nuevas estrategias de producción para alcanzar los rendimientos potenciales en Soja). Agromercado, Cuadernillo Soja, 27(141), 18–20.Google Scholar
  29. Flores, C. C., & Sarandón, S. J. (2006). Development of indicators for evaluating the sustainability of agro-ecosystems at regional level. (Desarrollo de indicadores para la evaluación de la sustentabilidad de agroecosistemas a escala regional). Revista Brasilera de Agroecología, 1(1), 353–356.Google Scholar
  30. Galindo, G., Sainato, C., Dapena, C., Fernández-Turiel, J. L., Gimeno, D., Pomposiello, M. C., & Panarello, H. O. (2007). Surface and groundwater quality in the northeastern region of Buenos Aires Province, Argentina. Journal of South American Earth Sciences, 23(4), 336–345.CrossRefGoogle Scholar
  31. Goscinny, S., Unterluggauer, H., Aldrian, J., Hanot, V., & Masselter, S. (2012). Determination of glyphosate and its metabolite AMPA (aminomethylphosphonic acid) in cereals after derivatization by isotope dilution and UPLC-MS/MS. Food Analytical Methods, 5(5), 1177–1185.CrossRefGoogle Scholar
  32. Gourley, B. L., Parker, S. B., Jones, B. J., Zumbrennen, K. B., & Leibold, E. A. (2003). Cytosolic aconitase and ferritin are regulated by iron in Caenorhabditis elegans. Journal of Biological Chemistry, 278, 3227–3234.CrossRefGoogle Scholar
  33. Höss, S., Henschel, T., Haitzer, M., Traunspurger, W., & Steinberg, C. E. (2001). Toxicity of cadmium to Caenorhabditis elegans (Nematoda) in whole sediment and pore water—the ambiguous role of organic matter. Environmental Toxicology and Chemistry, 20, 2794–2801.Google Scholar
  34. Höss, S., Jänsch, S., Moser, T., Junker, T., & Römbke, J. (2009). Assessing the toxicity of contaminated soils using the nematode Caenorhabditis elegans as test organism. Ecotoxicology and Environmental Safety, 72(7), 1811–1818.CrossRefGoogle Scholar
  35. Höss, S., Schlottmann, K., & Traunspurger, W. (2011). Toxicity of ingested cadmium to the nematode Caenorhabditis elegans. Environmental Science and Technology., 45, 10219–10225. doi: 10.1021/es2027136.CrossRefGoogle Scholar
  36. Höss, S., Ahlf, W., Bergtold, M., Bluebaum-Gronau, E., Brinke, M., Donnevert, G., Menzel, R., Möhlenkamp, C., Ratte, H. T., Traunspurger, W., Von Danwitz, B., & Pluta, H. J. (2012). Interlaboratory comparison of a standardized toxicity test using the nematode Caenorhabditis elegans (ISO 10872). Environmental Toxicology and Chemistry, 31, 1525–1535.CrossRefGoogle Scholar
  37. Hsu, P. C., O'Callaghan, M., Al-Salim, N., & Hurst, M. R. (2012). Quantum dot nanoparticles affect the reproductive system of Caenorhabditis elegans. Environmental Toxicology and Chemistry, 31, 2366–2374.CrossRefGoogle Scholar
  38. INTA, Instituto Nacional de Tecnología Agropecuaria (National Institute of Agricultural Technology) (1972). Charter soil of Argentina (Carta de suelos de la República Argentina). Pergamino (3360–32). INTA, Pergamino. Buenos Aires province, Argentina.Google Scholar
  39. ISO, International Organization for Standardization. (2010). ISO 10872: 2010. Water quality-determination of the toxic effect of sediment and soil samples on growth, fertility and reproduction of Caenorhabditis elegans (Nematoda). Geneva: International Organization for Standardization.Google Scholar
  40. Jackson, M. L. (1976). Soil chemical analysis (Análisis Químico de Suelos). Barcelona: Ed. Omega.Google Scholar
  41. Kannel, P. R., Lee, S., Lee, Y. S., Kanel, S. R., & Khan, S. P. (2007). Application of water quality indices and dissolved oxygen as indicators for river water classification and urban impact assessment. Environmental Monitoring and Assessment, 132(1–3), 93–110.CrossRefGoogle Scholar
  42. Khalil, B., Ou, C., Proulx-McInnis, S., St-Hilaire, A., & Zanacic, E. (2014). Statistical assessment of the surface water quality monitoring network in Saskatchewan. Water, Air & Soil Pollution, 225(10), 2128–2150.CrossRefGoogle Scholar
  43. Kuzmanovic, M., López-Doval, J. C., De Castro-Catalá, N., Guasch, H., Petrovic, M., Muñoz, I., Ginebreda, A., & Barceló, D. (2015). Ecotoxicological risk assessment of chemical pollution in four Iberian river basins and its relationship with the aquatic macroinvertebrate community status. Science of the Total Environment, 540, 324–333.CrossRefGoogle Scholar
  44. Lee, H., Cho, B. K., Kim, M. S., Lee, W. H., Tewari, J., Bae, H., Sohn, S., & Chi, H. Y. (2013). Prediction of crude protein and oil content of soybeans using Raman spectroscopy. Sensors and Actuators B: Chemical, 185, 694–700.CrossRefGoogle Scholar
  45. Leung, M., Williams, P. L., Benedetto, A., Au, C., Helmcke, K. J., Aschner, M., & Meyer, J. N. (2008). Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicological Sciences, 106, 5–28.CrossRefGoogle Scholar
  46. Lin, Y. T., Hoang, H., Hsieh, S. I., Rangel, N., Foster, A. L., Sampayo, J. N., Lithgow, G. J., & Srinivasan, C. (2006). Manganous ion supplementation accelerates wild type development, enhances stress resistance, and rescues the life span of a shortlived Caenorhabditis elegans mutant. Free Radical Biology and Medicine, 40, 1185–1193.CrossRefGoogle Scholar
  47. Liu, C. M., McLean, P. A., Sookdeo, C. C., & Cannon, F. C. (1991). Degradation of the herbicide glyphosate by members of the family Rhizobiaceae. Applied and Environmental Microbiology, 57(6), 1799–1804.Google Scholar
  48. Lupi, L., Miglioranza, K. S., Aparicio, V. C., Marino, D., Bedmar, F., & Wunderlin, D. A. (2015). Occurrence of glyphosate and AMPA in an agricultural watershed from the southeastern region of Argentina. Science of the Total Environment, 536, 687–694.CrossRefGoogle Scholar
  49. Mamy, L., Gabrielle, B., & Barriuso, E. (2010). Comparative environmental impacts of glyphosate and conventional herbicides when used with glyphosate-tolerant and non-tolerant crops. Environmental Pollution, 158(10), 3172–3178.CrossRefGoogle Scholar
  50. Martínez-Sales, M., García-Ximénez, F., & Espinós, F. J. (2015). Zebrafish as a possible bioindicator of organic pollutants with effects on reproduction in drinking waters. Journal of Environmental Sciences, 33, 254–260.CrossRefGoogle Scholar
  51. Mozejko, J. (2012). Detecting and estimating trends of water quality parameters. Dr. Voudouris (Ed.), ISBN: 978–953–51-0486-5, InTech, Available from:
  52. Myers, J. P., Antoniou, M. N., Blumberg, B., Carroll, L., Colborn, T., Everett, L. G., et al. (2016). Concerns over use of glyphosate-based herbicides and risks associated with exposures: A consensus statement. Environmental Health, 15(1), 19.CrossRefGoogle Scholar
  53. Nedelkoska, T. V., & Low, G. C. (2004). High-performance liquid chromatographic determination of glyphosate in water and plant material after pre-column derivatisation with 9-fluorenylmethyl chloroformate. Analytica Chimica Acta, 511(1), 145–153.CrossRefGoogle Scholar
  54. Palácio, S. M., Espinoza-Quiñones, F. R., de Pauli, A. R., Piana, P. A., Queiroz, C. B., Fabris, S. C., Fagundes-Klen, M. R., & Veit, M. T. (2016). Assessment of anthropogenic impacts on the water quality of Marreco River, Brazil, based on principal component analysis and toxicological assays. Water, Air, & Soil Pollution, 227(9), 307.CrossRefGoogle Scholar
  55. Palmer, M. A., Filoso, S., & Fanelli, R. M. (2014). From ecosystems to ecosystem services: Stream restoration as ecological engineering. Ecological Engineering, 65, 62–70.CrossRefGoogle Scholar
  56. Perkin-Elmer. (2000). Analytical methods for atomic absorption spectrometer. Norwalk: Perkin-Elmer Corp.Google Scholar
  57. Peruzzo, P. J., Porta, A. A., & Ronco, A. E. (2008). Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina. Environmental Pollution, 156(1), 61–66.Google Scholar
  58. R Core Team. (2016). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing Available at: Scholar
  59. Ratcliff, A. W., Busse, M. D., & Shestak, C. J. (2006). Changes in microbial community structure following herbicide (glyphosate) additions to forest soils. Applied Soil Ecology, 34(2), 114–124.CrossRefGoogle Scholar
  60. Sainato, C., Pomposiello, M. C., Landini, A., Galindo, G., & Malleville, H. (2000). The hydrogeological sections of the Pergamino basin (Buenos Aires province, Argentina): audiomagnetotelluric and geochemical results. Brazilian Journal of Geophysics, 18(2), 187–200.Google Scholar
  61. SAyDS, Secretaría de Ambiente y Desarrollo Sustentable de Argentina (Secretariat of Sustainable Development and Environment of Argentina) (1993). Decree N° 831/93. Federal Hazardous Wastes Act No 24051. Secretariat of Sustainable Development and Environment of Argentina. Official Bulletin of Argentine Republic 03/05/1993.Google Scholar
  62. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH image to ImageJ: 25 years of image analysis. Nature Methods, 7, 671–675.CrossRefGoogle Scholar
  63. Schuster, R., Gratzfeld-Hüsgen, A. (1992). Hewlett-Packard application note (Publication No. 12–5091–3621 E). Avondale: Hewlett-Packard.Google Scholar
  64. Stiernagle, T. (2005). Maintenance of C. elegans. C. elegans: a practical approach. New York: Oxford University Press.Google Scholar
  65. Tanimoto, Y., Yamazoe-Umemoto, A., Fujita, K., Kawazoe, Y., Miyanishi, Y., Yamazaki, S. J., et al. (2017). Calcium dynamics regulating the timing of decision-making in C. elegans. eLife, 6, e21629.CrossRefGoogle Scholar
  66. Tejeda-Benitez, L., Flegal, R., Odigie, K., & Olivero-Verbel, J. (2016). Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River, Colombia. Environmental Pollution, 212, 238–250.CrossRefGoogle Scholar
  67. Traunspurger, W., Haitzer, M., Höss, S., Beier, S., Ahlf, W., & Steinberg, C. (1997). Ecotoxicological assessment of aquatic sediments with Caenorhabditis elegans (nematoda)—a method for testing liquid medium and whole-sediment samples. Environmental Toxicology and Chemistry, 16(2), 245–250.Google Scholar
  68. Tsui, M. T. K., & Chu, L. M. (2008). Environmental fate and non-target impact of glyphosate-based herbicide (Roundup®) in a subtropical wetland. Chemosphere, 71(3), 439–446.CrossRefGoogle Scholar
  69. UCCC, Guidelines for Interpretations of Water Quality for Irrigation. (1974). Technical Bulletin (pp. 20–28). Sacramento: University of California Committee of Consultants.Google Scholar
  70. Vera, M. S., Lagomarsino, L., Sylvester, M., Pérez, G. L., Rodríguez, P., Mugni, H., & Pizarro, H. (2010). New evidences of Roundup® (glyphosate formulation) impact on the periphyton community and the water quality of freshwater ecosystems. Ecotoxicology, 19(4), 710–721.CrossRefGoogle Scholar
  71. Vidal, T., Pereira, J. L., Abrantes, N., Soares, A. M., & Gonçalves, F. (2012). Ecotoxicological assessment of contaminated river sites as a proxy for the water framework directive: an acid mine drainage case study. Water, Air, & Soil Pollution, 223(9), 6009–6023.CrossRefGoogle Scholar
  72. Viglizzo, E. F., Frank, F., Bernardos, J., Buschiazzo, D. E., & Cabo, S. (2006). A rapid method for assessing the environmental performance of commercial farms in the Pampas of Argentina. Environmental Monitoring and Assessment, 117(1–3), 109–134.CrossRefGoogle Scholar
  73. Wah Chu, K., & Chow, K. L. (2002). Synergistic toxicity of multiple heavy metals is revealed by a biological assay using a nematode and its transgenic derivative. Aquatic Toxicology, 61, 53–64.CrossRefGoogle Scholar
  74. Wernersson, A. S., Carere, M., Maggi, C., Tusil, P., Soldan, P., James, A., et al. (2015). The European technical report on aquatic effect-based monitoring tools under the water framework directive. Environmental Sciences Europe, 27, 1–11.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Instituto de Investigaciones en Biociencias Agrícolas y AmbientalesConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos AiresCABAArgentina
  2. 2.Cátedra de Bioquímica, Facultad de AgronomíaUniversidad de Buenos AiresCABAArgentina
  3. 3.Laboratorio Experimental de Tecnologías SustentablesInstituto Nacional del AguaPcia. Buenos AiresArgentina
  4. 4.Dirección de Servicios HidrológicosInstituto Nacional del AguaPcia. Buenos AiresArgentina
  5. 5.Cátedra de Protección Vegetal, Facultad de AgronomíaUniversidad de Buenos AiresCABAArgentina

Personalised recommendations