Skip to main content
Log in

Optimization of Collaborative Photo-Fenton Oxidation and Coagulation for the Treatment of Petroleum Refinery Wastewater with Scrap Iron

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The photo-Fenton oxidation treatment combined with a coagulation/flocculation process was investigated for removal of chemical oxygen demand (COD) from a refractory petroleum refinery wastewater. Scrap iron shavings were used as the catalyst source. A response surface methodology (RSM) with a cubic IV optimal design was employed for optimizing the treatment process. Kinetic studies showed that the proposed process could be described by a two-stage, second-order reaction model. Experiments showed that precipitation of iron ions can be utilized as a post-oxidation coagulation stage to improve the overall treatment efficiency. More than 96.9% of the COD removal was achieved under optimal conditions, with a post-oxidation coagulation stage accounting for about 30% of the removal, thus confirming the collaborative role of oxidation and coagulation in the overall treatment. A low-velocity gradient of 8.0 s−1 for a short mixing time of 10 min resulted in optimum post-oxidation coagulation. Comparison of photo-Fenton oxidation to a standard Fenton reaction in the same wastewater showed more rapid COD removal for photo-Fenton, with an initial second-order rate constant of 4.0 × 10−4 L mg−1 min−1 compared to the Fenton reaction’s overall second-order rate constant of 7.0 × 10−5 L mg−1 min−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ahmadi, M., Vahabzadeh, F., Bonakdarpour, B., Mofarrah, E., & Mehranian, M. (2005). Application of the central composite design and response surface methodology to the advanced treatment of olive oil processing wastewater using Fenton’s peroxidation. Journal of Hazardous Materials, 123(1–3), 187–195. doi:10.1016/j.jhazmat.2005.03.042.

    Article  CAS  Google Scholar 

  • Altaher, H., ElQada, E., & Omar, W. (2011). Pretreatment of wastewater streams from petroleum/petrochemical industries using coagulation. Advances in Chemical Engineering and Science, 1, 245–251. doi:10.4236/aces.2011.14035.

    Article  CAS  Google Scholar 

  • APHA. (2005). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association (APHA).

    Google Scholar 

  • Badawy, M. I., Ghaly, M. Y., & Gad-Allah, T. A. (2006). Advanced oxidation processes for the removal of organophosphorus pesticides from wastewater. Desalination, 194(1–3), 166–175. doi:10.1016/j.desal.2005.09.027.

    Article  CAS  Google Scholar 

  • Benatti, C. T., Tavares, C. R. G., & Guedes, T. A. (2006). Optimization of Fenton’s oxidation of chemical laboratory wastewaters using the response surface methodology. Journal of Environmental Management, 80(1), 66–74. doi:10.1016/j.jenvman.2005.08.014.

    Article  CAS  Google Scholar 

  • Bergendahl, J. A., & Thies, T. P. (2004). Fenton’s oxidation of MTBE with zero-valent iron. Water Research, 38(2), 327–334. doi:10.1016/j.watres.2003.10.003.

    Article  CAS  Google Scholar 

  • Chang, S.-H., Chuang, S.-H., Li, H.-C., Liang, H.-H., & Huang, L.-C. (2009). Comparative study on the degradation of I.C. Remazol Brilliant Blue R and I.C. Acid Black 1 by Fenton oxidation and Fe0/air process and toxicity evaluation. Journal of Hazardous Materials, 166(2–3), 1279–1288. doi:10.1016/j.jhazmat.2008.12.042.

    Article  CAS  Google Scholar 

  • Coelho, A., Castro, A. V., Dezotti, M., & Sant’Anna Jr., G. L. (2006). Treatment of petroleum refinery sourwater by advanced oxidation processes. Journal of Hazardous Materials, 137(1), 178–184. doi:10.1016/j.jhazmat.2006.01.051.

    Article  CAS  Google Scholar 

  • Crites, R., & Tchobanoglous, G. (1998). Small and decentralized wastewater management systems. Boston: McGraw-Hill.

  • da Costa Filho, B. M., da Silva, V. M., Silva, J. D. O., Hora Machado, A. E. D., & Trovó, A. G. (2016). Coupling coagulation, flocculation and decantation with photo-Fenton process for treatment of industrial wastewater containing fipronil: biodegradability and toxicity assessment. Journal of Environmental Management, 174, 71–78. doi:10.1016/j.jenvman.2016.03.019.

    Article  Google Scholar 

  • Davis, M. L. (2010). Water and wastewater engineering, design principles and practice. New York: McGraw-Hill.

    Google Scholar 

  • Design Expert software. (2010). Version 8, user’s guide. USA: Stat-Ease.

    Google Scholar 

  • Diya’uddeen, B. H., Daud, W. M. A. W., & Abdul Aziz, A. R. (2011). Treatment technologies for petroleum refinery effluents: a review. Process Safety and Environmental Protection, 89(2), 95–105. doi:10.1016/j.psep.2010.11.003.

    Article  Google Scholar 

  • Durán-Moreno, A., García-González, S. A., Gutiérrez-Lara, M. R., Rigas, F., & Ramírez-Zamora, R. M. (2011). Assessment of Fenton’s reagent and ozonation as pre-treatments for increasing the biodegradability of aqueous diethanolamine solutions from an oil refinery gas sweetening process. Journal of Hazardous Materials, 186(2–3), 1652–1659. doi:10.1016/j.jhazmat.2010.12.043.

    Article  Google Scholar 

  • El-Naas, M. H., Al-Zuhair, S., Al-Lobaney, A., & Makhlouf, S. (2009). Assessment of electrocoagulation for the treatment of petroleum refinery wastewater. Journal of Environmental Management, 91(1), 180–185. doi:10.1016/j.jenvman.2009.08.003.

    Article  CAS  Google Scholar 

  • Galvão, S. A. O., Mota, A. L. N., Silva, D. N., Moraes, J. E. F., Nascimento, C. A. O., & Chiavone-Filho, O. (2006). Application of the photo-Fenton process to the treatment of wastewaters contaminated with diesel. Science of the Total Environment, 367(1), 42–49. doi:10.1016/j.scitotenv.2006.01.014.

    Article  Google Scholar 

  • Gernjak, W., Krutzler, T., Glaser, A., Malato, S., Caceres, J., Bauer, R., et al. (2003). Photo-Fenton treatment of water containing natural phenolic pollutants. Chemosphere, 50(1), 71–78. doi:10.1016/S0045-6535(02)00403-4.

    Article  CAS  Google Scholar 

  • Guedes, A. M. F. M., Madeira, L. M. P., Boaventura, R. A. R., & Costa, C. A. V. (2003). Fenton oxidation of cork cooking wastewater—overall kinetic analysis. Water Research, 37(13), 3061–3069. doi:10.1016/S0043-1354(03)00178-7.

    Article  CAS  Google Scholar 

  • Guerreiro, L. F., Rodrigues, C. S. D., Duda, R. M., de Oliveira, R. A., Boaventura, R. A. R., & Madeira, L. M. (2016). Treatment of sugarcane vinasse by combination of coagulation/flocculation and Fenton’s oxidation. Journal of Environmental Management, 181, 237–248. doi:10.1016/j.jenvman.2016.06.027.

    Article  CAS  Google Scholar 

  • Hasan, D. U. B., Abdul Aziz, A. R., & Daud, W. M. A. W. (2012). Oxidative mineralisation of petroleum refinery effluent using Fenton-like process. Chemical Engineering Research and Design, 90(2), 298–307. doi:10.1016/j.cherd.2011.06.010.

    Article  CAS  Google Scholar 

  • Kallel, M., Belaid, C., Boussahel, R., Ksibi, M., Montiel, A., & Elleuch, B. (2009). Olive mill wastewater degradation by Fenton oxidation with zero-valent iron and hydrogen peroxide. Journal of Hazardous Materials, 163(2–3), 550–554. doi:10.1016/j.jhazmat.2008.07.006.

    Article  CAS  Google Scholar 

  • Kang, Y. W., & Hwang, K. Y. (2000). Effects of reaction conditions on the oxidation efficiency in the Fenton process. Water Research, 34(10), 2786–2790. doi:10.1016/s0043-1354(99)00388-7.

    Article  CAS  Google Scholar 

  • Kang, S. F., Liao, C. H., & Chen, M. C. (2002). Pre-oxidation and coagulation of textile wastewater by the Fenton process. Chemosphere, 46(6), 923–928. doi:10.1016/S0045-6535(01)00159-X.

    Article  CAS  Google Scholar 

  • Kavitha, V., & Palanivelu, K. (2004). The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere, 55(9), 1235–1243. doi:10.1016/j.chemosphere.2003.12.022.

    Article  CAS  Google Scholar 

  • Lin, S. H., & Lo, C. C. (1997). Fenton process for treatment of desizing wastewater. Water Research, 31(8), 2050–2056. doi:10.1016/S0043-1354(97)00024-9.

    Article  CAS  Google Scholar 

  • Martins, R. C., Lopes, D. V., Quina, M. J., & Quinta-Ferreira, R. M. (2012). Treatment improvement of urban landfill leachates by Fenton-like process using ZVI. Chemical Engineering Journal, 192, 219–225. doi:10.1016/j.cej.2012.03.053.

    Article  CAS  Google Scholar 

  • Minitab. (2016). Minitab software, version 17, user’s guide. USA: Minitab Inc..

    Google Scholar 

  • Mota, A., Albuquerque, L., Beltrame, L. T. C., Chiavone-Filho, O., Machulek Jr., A., & Nascimento, C. (2009). Advanced oxidation processes and their application in the petroleum industry: a review. Brazilian Journal of Petroleum and Gas, 2(3), 122–142.

    Google Scholar 

  • Mu, Y., Yu, H.-Q., Zheng, J.-C., Zhang, S.-J., & Sheng, G.-P. (2004). Reductive degradation of nitrobenzene in aqueous solution by zero-valent iron. Chemosphere, 54(7), 789–794. doi:10.1016/j.chemosphere.2003.10.023.

    Article  CAS  Google Scholar 

  • Oil Market Report (OMR). (2016). International energy agency. Paris: OECD/IEA, Trans.

    Google Scholar 

  • Özdemir, C., Tezcan, H., Sahinkaya, S., & Kalipci, E. (2010). Pretreatment of olive oil mill wastewater by two different applications of Fenton oxidation processes. Clean: Soil, Air, Water, 38(12), 1152–1158. doi:10.1002/clen.201000222.

    Google Scholar 

  • Papić, S., Vujević, D., Koprivanac, N., & Šinko, D. (2009). Decolourization and mineralization of commercial reactive dyes by using homogeneous and heterogeneous Fenton and UV/Fenton processes. Journal of Hazardous Materials, 164(2–3), 1137–1145. doi:10.1016/j.jhazmat.2008.09.008.

    Google Scholar 

  • Peres, J. A., Beltrán de Heredia, J., & Domı́nguez, J. R. (2004). Integrated Fenton’s reagent—coagulation/flocculation process for the treatment of cork processing wastewaters. Journal of Hazardous materials, 107(3), 115–121. doi:10.1016/j.jhazmat.2003.09.012

  • Primo, O., Rivero, M. J., & Ortiz, I. (2008). Photo-Fenton process as an efficient alternative to the treatment of landfill leachates. Journal of Hazardous Materials, 153(1–2), 834–842. doi:10.1016/j.jhazmat.2007.09.053.

    Article  CAS  Google Scholar 

  • Rafter, J. A., Abell, M. L., & Braselton, J. P. (2002). Multiple comparison methods for means. SIAM Review, 44(2), 259–278.

    Article  Google Scholar 

  • Rodríguez-Chueca, J., Amor, C., Fernandes, J. R., Tavares, P. B., Lucas, M. S., & Peres, J. A. (2016). Treatment of crystallized-fruit wastewater by UV-A LED photo-Fenton and coagulation–flocculation. Chemosphere, 145, 351–359. doi:10.1016/j.chemosphere.2015.11.092.

    Article  Google Scholar 

  • Rubio-Clemente, A., Chica, E., & Peñuela, G. A. (2015). Petrochemical wastewater treatment by photo-Fenton process. [journal article]. Water, Air, & Soil Pollution, 226(3), 62. doi:10.1007/s11270-015-2321-x.

    Article  Google Scholar 

  • Saber, A., Hasheminejad, H., Taebi, A., & Ghaffari, G. (2014). Optimization of Fenton-based treatment of petroleum refinery wastewater with scrap iron using response surface methodology. Applied Water Science, 4(3), 283–290.

    Article  Google Scholar 

  • Saien, J., & Nejati, H. (2007). Enhanced photocatalytic degradation of pollutants in petroleum refinery wastewater under mild conditions. Journal of Hazardous Materials, 148(1–2), 491–495. doi:10.1016/j.jhazmat.2007.03.001.

    Article  CAS  Google Scholar 

  • Santo, C. E., Vilar, V. J. P., Botelho, C. M. S., Bhatnagar, A., Kumar, E., & Boaventura, R. A. R. (2012). Optimization of coagulation–flocculation and flotation parameters for the treatment of a petroleum refinery effluent from a Portuguese plant. Chemical Engineering Journal, 183, 117–123. doi:10.1016/j.cej.2011.12.041.

    Article  CAS  Google Scholar 

  • Santos da Silva, S., Chiavone-Filho, O., de Barros Neto, E. L., Foletto, E. L., & Mota, A. L. N. (2013). Effect of inorganic salt mixtures on phenol mineralization by photo-Fenton-analysis via an experimental design. [journal article]. Water, Air, & Soil Pollution, 225(1), 1784. doi:10.1007/s11270-013-1784-x.

    Article  Google Scholar 

  • Sarria, V., Parra, S., Adler, N., Péringer, P., Benitez, N., & Pulgarin, C. (2002). Recent developments in the coupling of photoassisted and aerobic biological processes for the treatment of biorecalcitrant compounds. Catalysis Today, 76(2–4), 301–315. doi:10.1016/S0920-5861(02)00228-6.

    Article  CAS  Google Scholar 

  • Senn, A. M., Russo, Y. M., & Litter, M. I. (2014). Treatment of wastewater from an alkaline cleaning solution by combined coagulation and photo-Fenton processes. Separation and Purification Technology, 132, 552–560. doi:10.1016/j.seppur.2014.06.006.

    Article  CAS  Google Scholar 

  • Shahrezaei, F., Mansouri, Y., Zinatizadeh, A. A. L., & Akhbari, A. (2012). Process modeling and kinetic evaluation of petroleum refinery wastewater treatment in a photocatalytic reactor using TiO2 nanoparticles. Powder Technology, 221, 203–212. doi:10.1016/j.powtec.2012.01.003.

    Article  CAS  Google Scholar 

  • Stepnowski, P., Siedlecka, E. M., Behrend, P., & Jastorff, B. (2002). Enhanced photo-degradation of contaminants in petroleum refinery wastewater. Water Research, 36(9), 2167–2172. doi:10.1016/s0043-1354(01)00450-x.

    Article  CAS  Google Scholar 

  • Szpyrkowicz, L., Juzzolino, C., & Kaul, S. N. (2001). A comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and Fenton reagent. Water Research, 35(9), 2129–2136. doi:10.1016/s0043-1354(00)00487-5.

    Article  CAS  Google Scholar 

  • Talinli, I., & Anderson, G. K. (1992). Interference of hydrogen peroxide on the standard cod test. Water Research, 26(1), 107–110. doi:10.1016/0043-1354(92)90118-N.

    Article  CAS  Google Scholar 

  • Tchobanoglous, G., Burton, F., & Stensel, H. D. (2003). Metcalf & Eddy, wastewater engineering, treatment, disposal & reuse (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Tiburtius, E. R. L., Peralta-Zamora, P., & Emmel, A. (2005). Treatment of gasoline-contaminated waters by advanced oxidation processes. Journal of Hazardous Materials, 126(1–3), 86–90. doi:10.1016/j.jhazmat.2005.06.003.

    Article  CAS  Google Scholar 

  • Tony, M. A., Purcell, P. J., Zhao, Y. Q., Tayeb, A. M., & El-Sherbiny, M. F. (2009). Photo-catalytic degradation of an oil-water emulsion using the photo-fenton treatment process: Effects and statistical optimization. Journal of Environmental Science and Health, Part A, 44(2), 179–187. doi:10.1080/10934520802539830.

    Article  CAS  Google Scholar 

  • U.S. EPA (1982). Development document for effluent limitations guidelines and new source performance standards for the petroleum refining point source category. Effluent Guidelines Division (Vol. EPA-400/1–82/014). EPA-400/1–82/014.

  • World Energy Ourlook (WEO). (2016). Executive summary. Paris: International Energy Agency (IEA).

    Google Scholar 

  • Wu, Y., Zhou, S., Qin, F., Zheng, K., & Ye, X. (2010). Modeling the oxidation kinetics of Fenton’s process on the degradation of humic acid. Journal of Hazardous Materials, 179(1–3), 533–539. doi:10.1016/j.jhazmat.2010.03.036.

    Article  CAS  Google Scholar 

  • Wu, Y., Zhou, S., Ye, X., Zhao, R., & Chen, D. (2011). Oxidation and coagulation removal of humic acid using Fenton process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 379(1–3), 151–156. doi:10.1016/j.colsurfa.2010.11.057.

    Article  CAS  Google Scholar 

  • Yan, L., Ma, H., Wang, B., Wang, Y., & Chen, Y. (2011). Electrochemical treatment of petroleum refinery wastewater with three-dimensional multi-phase electrode. Desalination, 276(1–3), 397–402. doi:10.1016/j.desal.2011.03.083.

    Article  CAS  Google Scholar 

  • Yoon, J., Kim, Y., Huh, J., Lee, Y., & Lee, D. (2002). Roles of oxidation and coagulation in Fenton process for the removal of organics in landfill leachate. Journal of Industrial and Engineering Chemistry, 8(5), 410–418.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Esfahan Oil Refining Company (1390-6) and Isfahan University of Technology for their financial support. Thanks also goes to Mohammad Amin Ghani Moghaddam for laboratory assistance, and Dr. Erick Bandala of the Desert Research Institute for his review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. James.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saber, A., Mortazavian, S., James, D.E. et al. Optimization of Collaborative Photo-Fenton Oxidation and Coagulation for the Treatment of Petroleum Refinery Wastewater with Scrap Iron. Water Air Soil Pollut 228, 312 (2017). https://doi.org/10.1007/s11270-017-3494-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3494-2

Keywords

Navigation