Abstract
The photo-Fenton oxidation treatment combined with a coagulation/flocculation process was investigated for removal of chemical oxygen demand (COD) from a refractory petroleum refinery wastewater. Scrap iron shavings were used as the catalyst source. A response surface methodology (RSM) with a cubic IV optimal design was employed for optimizing the treatment process. Kinetic studies showed that the proposed process could be described by a two-stage, second-order reaction model. Experiments showed that precipitation of iron ions can be utilized as a post-oxidation coagulation stage to improve the overall treatment efficiency. More than 96.9% of the COD removal was achieved under optimal conditions, with a post-oxidation coagulation stage accounting for about 30% of the removal, thus confirming the collaborative role of oxidation and coagulation in the overall treatment. A low-velocity gradient of 8.0 s−1 for a short mixing time of 10 min resulted in optimum post-oxidation coagulation. Comparison of photo-Fenton oxidation to a standard Fenton reaction in the same wastewater showed more rapid COD removal for photo-Fenton, with an initial second-order rate constant of 4.0 × 10−4 L mg−1 min−1 compared to the Fenton reaction’s overall second-order rate constant of 7.0 × 10−5 L mg−1 min−1.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ahmadi, M., Vahabzadeh, F., Bonakdarpour, B., Mofarrah, E., & Mehranian, M. (2005). Application of the central composite design and response surface methodology to the advanced treatment of olive oil processing wastewater using Fenton’s peroxidation. Journal of Hazardous Materials, 123(1–3), 187–195. doi:10.1016/j.jhazmat.2005.03.042.
Altaher, H., ElQada, E., & Omar, W. (2011). Pretreatment of wastewater streams from petroleum/petrochemical industries using coagulation. Advances in Chemical Engineering and Science, 1, 245–251. doi:10.4236/aces.2011.14035.
APHA. (2005). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association (APHA).
Badawy, M. I., Ghaly, M. Y., & Gad-Allah, T. A. (2006). Advanced oxidation processes for the removal of organophosphorus pesticides from wastewater. Desalination, 194(1–3), 166–175. doi:10.1016/j.desal.2005.09.027.
Benatti, C. T., Tavares, C. R. G., & Guedes, T. A. (2006). Optimization of Fenton’s oxidation of chemical laboratory wastewaters using the response surface methodology. Journal of Environmental Management, 80(1), 66–74. doi:10.1016/j.jenvman.2005.08.014.
Bergendahl, J. A., & Thies, T. P. (2004). Fenton’s oxidation of MTBE with zero-valent iron. Water Research, 38(2), 327–334. doi:10.1016/j.watres.2003.10.003.
Chang, S.-H., Chuang, S.-H., Li, H.-C., Liang, H.-H., & Huang, L.-C. (2009). Comparative study on the degradation of I.C. Remazol Brilliant Blue R and I.C. Acid Black 1 by Fenton oxidation and Fe0/air process and toxicity evaluation. Journal of Hazardous Materials, 166(2–3), 1279–1288. doi:10.1016/j.jhazmat.2008.12.042.
Coelho, A., Castro, A. V., Dezotti, M., & Sant’Anna Jr., G. L. (2006). Treatment of petroleum refinery sourwater by advanced oxidation processes. Journal of Hazardous Materials, 137(1), 178–184. doi:10.1016/j.jhazmat.2006.01.051.
Crites, R., & Tchobanoglous, G. (1998). Small and decentralized wastewater management systems. Boston: McGraw-Hill.
da Costa Filho, B. M., da Silva, V. M., Silva, J. D. O., Hora Machado, A. E. D., & Trovó, A. G. (2016). Coupling coagulation, flocculation and decantation with photo-Fenton process for treatment of industrial wastewater containing fipronil: biodegradability and toxicity assessment. Journal of Environmental Management, 174, 71–78. doi:10.1016/j.jenvman.2016.03.019.
Davis, M. L. (2010). Water and wastewater engineering, design principles and practice. New York: McGraw-Hill.
Design Expert software. (2010). Version 8, user’s guide. USA: Stat-Ease.
Diya’uddeen, B. H., Daud, W. M. A. W., & Abdul Aziz, A. R. (2011). Treatment technologies for petroleum refinery effluents: a review. Process Safety and Environmental Protection, 89(2), 95–105. doi:10.1016/j.psep.2010.11.003.
Durán-Moreno, A., García-González, S. A., Gutiérrez-Lara, M. R., Rigas, F., & Ramírez-Zamora, R. M. (2011). Assessment of Fenton’s reagent and ozonation as pre-treatments for increasing the biodegradability of aqueous diethanolamine solutions from an oil refinery gas sweetening process. Journal of Hazardous Materials, 186(2–3), 1652–1659. doi:10.1016/j.jhazmat.2010.12.043.
El-Naas, M. H., Al-Zuhair, S., Al-Lobaney, A., & Makhlouf, S. (2009). Assessment of electrocoagulation for the treatment of petroleum refinery wastewater. Journal of Environmental Management, 91(1), 180–185. doi:10.1016/j.jenvman.2009.08.003.
Galvão, S. A. O., Mota, A. L. N., Silva, D. N., Moraes, J. E. F., Nascimento, C. A. O., & Chiavone-Filho, O. (2006). Application of the photo-Fenton process to the treatment of wastewaters contaminated with diesel. Science of the Total Environment, 367(1), 42–49. doi:10.1016/j.scitotenv.2006.01.014.
Gernjak, W., Krutzler, T., Glaser, A., Malato, S., Caceres, J., Bauer, R., et al. (2003). Photo-Fenton treatment of water containing natural phenolic pollutants. Chemosphere, 50(1), 71–78. doi:10.1016/S0045-6535(02)00403-4.
Guedes, A. M. F. M., Madeira, L. M. P., Boaventura, R. A. R., & Costa, C. A. V. (2003). Fenton oxidation of cork cooking wastewater—overall kinetic analysis. Water Research, 37(13), 3061–3069. doi:10.1016/S0043-1354(03)00178-7.
Guerreiro, L. F., Rodrigues, C. S. D., Duda, R. M., de Oliveira, R. A., Boaventura, R. A. R., & Madeira, L. M. (2016). Treatment of sugarcane vinasse by combination of coagulation/flocculation and Fenton’s oxidation. Journal of Environmental Management, 181, 237–248. doi:10.1016/j.jenvman.2016.06.027.
Hasan, D. U. B., Abdul Aziz, A. R., & Daud, W. M. A. W. (2012). Oxidative mineralisation of petroleum refinery effluent using Fenton-like process. Chemical Engineering Research and Design, 90(2), 298–307. doi:10.1016/j.cherd.2011.06.010.
Kallel, M., Belaid, C., Boussahel, R., Ksibi, M., Montiel, A., & Elleuch, B. (2009). Olive mill wastewater degradation by Fenton oxidation with zero-valent iron and hydrogen peroxide. Journal of Hazardous Materials, 163(2–3), 550–554. doi:10.1016/j.jhazmat.2008.07.006.
Kang, Y. W., & Hwang, K. Y. (2000). Effects of reaction conditions on the oxidation efficiency in the Fenton process. Water Research, 34(10), 2786–2790. doi:10.1016/s0043-1354(99)00388-7.
Kang, S. F., Liao, C. H., & Chen, M. C. (2002). Pre-oxidation and coagulation of textile wastewater by the Fenton process. Chemosphere, 46(6), 923–928. doi:10.1016/S0045-6535(01)00159-X.
Kavitha, V., & Palanivelu, K. (2004). The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere, 55(9), 1235–1243. doi:10.1016/j.chemosphere.2003.12.022.
Lin, S. H., & Lo, C. C. (1997). Fenton process for treatment of desizing wastewater. Water Research, 31(8), 2050–2056. doi:10.1016/S0043-1354(97)00024-9.
Martins, R. C., Lopes, D. V., Quina, M. J., & Quinta-Ferreira, R. M. (2012). Treatment improvement of urban landfill leachates by Fenton-like process using ZVI. Chemical Engineering Journal, 192, 219–225. doi:10.1016/j.cej.2012.03.053.
Minitab. (2016). Minitab software, version 17, user’s guide. USA: Minitab Inc..
Mota, A., Albuquerque, L., Beltrame, L. T. C., Chiavone-Filho, O., Machulek Jr., A., & Nascimento, C. (2009). Advanced oxidation processes and their application in the petroleum industry: a review. Brazilian Journal of Petroleum and Gas, 2(3), 122–142.
Mu, Y., Yu, H.-Q., Zheng, J.-C., Zhang, S.-J., & Sheng, G.-P. (2004). Reductive degradation of nitrobenzene in aqueous solution by zero-valent iron. Chemosphere, 54(7), 789–794. doi:10.1016/j.chemosphere.2003.10.023.
Oil Market Report (OMR). (2016). International energy agency. Paris: OECD/IEA, Trans.
Özdemir, C., Tezcan, H., Sahinkaya, S., & Kalipci, E. (2010). Pretreatment of olive oil mill wastewater by two different applications of Fenton oxidation processes. Clean: Soil, Air, Water, 38(12), 1152–1158. doi:10.1002/clen.201000222.
Papić, S., Vujević, D., Koprivanac, N., & Šinko, D. (2009). Decolourization and mineralization of commercial reactive dyes by using homogeneous and heterogeneous Fenton and UV/Fenton processes. Journal of Hazardous Materials, 164(2–3), 1137–1145. doi:10.1016/j.jhazmat.2008.09.008.
Peres, J. A., Beltrán de Heredia, J., & Domı́nguez, J. R. (2004). Integrated Fenton’s reagent—coagulation/flocculation process for the treatment of cork processing wastewaters. Journal of Hazardous materials, 107(3), 115–121. doi:10.1016/j.jhazmat.2003.09.012
Primo, O., Rivero, M. J., & Ortiz, I. (2008). Photo-Fenton process as an efficient alternative to the treatment of landfill leachates. Journal of Hazardous Materials, 153(1–2), 834–842. doi:10.1016/j.jhazmat.2007.09.053.
Rafter, J. A., Abell, M. L., & Braselton, J. P. (2002). Multiple comparison methods for means. SIAM Review, 44(2), 259–278.
Rodríguez-Chueca, J., Amor, C., Fernandes, J. R., Tavares, P. B., Lucas, M. S., & Peres, J. A. (2016). Treatment of crystallized-fruit wastewater by UV-A LED photo-Fenton and coagulation–flocculation. Chemosphere, 145, 351–359. doi:10.1016/j.chemosphere.2015.11.092.
Rubio-Clemente, A., Chica, E., & Peñuela, G. A. (2015). Petrochemical wastewater treatment by photo-Fenton process. [journal article]. Water, Air, & Soil Pollution, 226(3), 62. doi:10.1007/s11270-015-2321-x.
Saber, A., Hasheminejad, H., Taebi, A., & Ghaffari, G. (2014). Optimization of Fenton-based treatment of petroleum refinery wastewater with scrap iron using response surface methodology. Applied Water Science, 4(3), 283–290.
Saien, J., & Nejati, H. (2007). Enhanced photocatalytic degradation of pollutants in petroleum refinery wastewater under mild conditions. Journal of Hazardous Materials, 148(1–2), 491–495. doi:10.1016/j.jhazmat.2007.03.001.
Santo, C. E., Vilar, V. J. P., Botelho, C. M. S., Bhatnagar, A., Kumar, E., & Boaventura, R. A. R. (2012). Optimization of coagulation–flocculation and flotation parameters for the treatment of a petroleum refinery effluent from a Portuguese plant. Chemical Engineering Journal, 183, 117–123. doi:10.1016/j.cej.2011.12.041.
Santos da Silva, S., Chiavone-Filho, O., de Barros Neto, E. L., Foletto, E. L., & Mota, A. L. N. (2013). Effect of inorganic salt mixtures on phenol mineralization by photo-Fenton-analysis via an experimental design. [journal article]. Water, Air, & Soil Pollution, 225(1), 1784. doi:10.1007/s11270-013-1784-x.
Sarria, V., Parra, S., Adler, N., Péringer, P., Benitez, N., & Pulgarin, C. (2002). Recent developments in the coupling of photoassisted and aerobic biological processes for the treatment of biorecalcitrant compounds. Catalysis Today, 76(2–4), 301–315. doi:10.1016/S0920-5861(02)00228-6.
Senn, A. M., Russo, Y. M., & Litter, M. I. (2014). Treatment of wastewater from an alkaline cleaning solution by combined coagulation and photo-Fenton processes. Separation and Purification Technology, 132, 552–560. doi:10.1016/j.seppur.2014.06.006.
Shahrezaei, F., Mansouri, Y., Zinatizadeh, A. A. L., & Akhbari, A. (2012). Process modeling and kinetic evaluation of petroleum refinery wastewater treatment in a photocatalytic reactor using TiO2 nanoparticles. Powder Technology, 221, 203–212. doi:10.1016/j.powtec.2012.01.003.
Stepnowski, P., Siedlecka, E. M., Behrend, P., & Jastorff, B. (2002). Enhanced photo-degradation of contaminants in petroleum refinery wastewater. Water Research, 36(9), 2167–2172. doi:10.1016/s0043-1354(01)00450-x.
Szpyrkowicz, L., Juzzolino, C., & Kaul, S. N. (2001). A comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and Fenton reagent. Water Research, 35(9), 2129–2136. doi:10.1016/s0043-1354(00)00487-5.
Talinli, I., & Anderson, G. K. (1992). Interference of hydrogen peroxide on the standard cod test. Water Research, 26(1), 107–110. doi:10.1016/0043-1354(92)90118-N.
Tchobanoglous, G., Burton, F., & Stensel, H. D. (2003). Metcalf & Eddy, wastewater engineering, treatment, disposal & reuse (4th ed.). New York: McGraw-Hill.
Tiburtius, E. R. L., Peralta-Zamora, P., & Emmel, A. (2005). Treatment of gasoline-contaminated waters by advanced oxidation processes. Journal of Hazardous Materials, 126(1–3), 86–90. doi:10.1016/j.jhazmat.2005.06.003.
Tony, M. A., Purcell, P. J., Zhao, Y. Q., Tayeb, A. M., & El-Sherbiny, M. F. (2009). Photo-catalytic degradation of an oil-water emulsion using the photo-fenton treatment process: Effects and statistical optimization. Journal of Environmental Science and Health, Part A, 44(2), 179–187. doi:10.1080/10934520802539830.
U.S. EPA (1982). Development document for effluent limitations guidelines and new source performance standards for the petroleum refining point source category. Effluent Guidelines Division (Vol. EPA-400/1–82/014). EPA-400/1–82/014.
World Energy Ourlook (WEO). (2016). Executive summary. Paris: International Energy Agency (IEA).
Wu, Y., Zhou, S., Qin, F., Zheng, K., & Ye, X. (2010). Modeling the oxidation kinetics of Fenton’s process on the degradation of humic acid. Journal of Hazardous Materials, 179(1–3), 533–539. doi:10.1016/j.jhazmat.2010.03.036.
Wu, Y., Zhou, S., Ye, X., Zhao, R., & Chen, D. (2011). Oxidation and coagulation removal of humic acid using Fenton process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 379(1–3), 151–156. doi:10.1016/j.colsurfa.2010.11.057.
Yan, L., Ma, H., Wang, B., Wang, Y., & Chen, Y. (2011). Electrochemical treatment of petroleum refinery wastewater with three-dimensional multi-phase electrode. Desalination, 276(1–3), 397–402. doi:10.1016/j.desal.2011.03.083.
Yoon, J., Kim, Y., Huh, J., Lee, Y., & Lee, D. (2002). Roles of oxidation and coagulation in Fenton process for the removal of organics in landfill leachate. Journal of Industrial and Engineering Chemistry, 8(5), 410–418.
Acknowledgements
The authors would like to thank Esfahan Oil Refining Company (1390-6) and Isfahan University of Technology for their financial support. Thanks also goes to Mohammad Amin Ghani Moghaddam for laboratory assistance, and Dr. Erick Bandala of the Desert Research Institute for his review of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Saber, A., Mortazavian, S., James, D.E. et al. Optimization of Collaborative Photo-Fenton Oxidation and Coagulation for the Treatment of Petroleum Refinery Wastewater with Scrap Iron. Water Air Soil Pollut 228, 312 (2017). https://doi.org/10.1007/s11270-017-3494-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11270-017-3494-2