Skip to main content
Log in

Synthesis and Metal-Ion Uptake Properties of a New Dithiocarbamate-Base Resin

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A new dithiocarbamate-base resin was synthesized utilizing the reaction between carbon disulfide and immobilized amines on the fully cross-linked side of the styrene-maleicimide (SMI) copolymer. The sorption characteristics of the synthesized resin for copper, lead, nickel, zinc, and cadmium ions were investigated, using atomic adsorption spectroscopy (AAS). The sorption capacity of the resin for each metal ion was studied as a function of pH and time. The optimum pH range for sorption of the metal ions was between 4 and 6. The capacity of the resin for the metal ions decreases in the following order: Cu(II) ≈ Pb(II) > > Zn(II) > Ni(II) > Cd(II). The sorption rate of the metal ions in the resin decreases in the following order: Zn(II) > Ni(II) > Cd(II) > Pb(II) > Cu(II). The affinity of the resin for the ions was also studied using a mixture of the heavy metal ions. The capacities of the new resin, especially for copper and lead, are significantly higher than previously studied resins. Additionally, it was shown that desorption of the captured ions from the resin within 24 h can be done using 1 M nitric acid solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abd El-Rehim, H. A., Hegazy, E. A., & El-Hag Ali, A. (2000). Selective removal of some heavy metal ions from aqueous solution using treated polyethylene-g-styrene/maleic anhydride membranes. Reactive and Functional Polymers, 43, 105–116.

    Article  Google Scholar 

  • Adamczyk-Szabela, D., Markiewicz, J., & Wolf, W. M. (2015). Heavy metal uptake by herbs. IV. Influence of soil pH on the content of heavy metals in Valeriana officinalis L. Water, Air, and Soil Pollution. doi:10.1007/s11270-015-2360-3.

  • Alam, M. N., Mandal, S. K., & Debnath, S. C. (2012). Effect of zinc effect of zinc dithiocarbamates and thiazole-based accelerators on the vulcanization of natural rubber. Rubber Chemistry and Technology, 85, 120–131.

    Article  CAS  Google Scholar 

  • Al-Sabagh, A. M., Noor El-Din, M. R., Morsi, R. E., & Elsabee, M. Z. (2009). Styrene-maleic anhydride copolymer esters as flow improvers of waxy crude oil. Journal of Petroleum Science and Engineering, 65, 139–146.

    Article  CAS  Google Scholar 

  • Atia, A. A., Donia, A. M., & Elwakeel, K. Z. (2005). Selective separation of mercury (II) using a synthetic resin containing amine and mercaptan as chelating groups. Reactive and Functional Polymers, 65, 267–275.

    Article  CAS  Google Scholar 

  • Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials, B97, 219–243.

    Article  Google Scholar 

  • Baraka, A., Hall, P. J., & Heslop, M. J. (2007). Melamine-formaldehyde-NTA chelating gel resin: Synthesis, characterization and application for copper(II) ion removal from synthetic wastewater. Journal of Hazardous Materials, 140, 86–94.

    Article  CAS  Google Scholar 

  • Bessbousse, H., Rhlalou, T., Verchère, J.-F., & Lebrun, L. (2008). Removal of heavy metal ions from aqueous solutions by filtration with a novel complexing membrane containing poly(ethyleneimine) in a poly(vinyl alcohol) matrix. Journal of Membrane Science, 307, 249–259.

    Article  CAS  Google Scholar 

  • Biçak, N., Bulutçu, N., Şenkal, B. F., & Gazi, M. (2001). Modification of crosslinked glycidyl methacrylate-based polymers for boron-specific column extraction. Reactive and Functional Polymers, 47, 175–184.

    Article  Google Scholar 

  • Bruzzoniti, M. C., & Fiore, S. (2014). Removal of inorganic contaminants from aqueous solutions: evaluation of the remediation efficiency and of the environmental impact of a zero-valent iron substrate. Water, Air, and Soil Pollution, 225(9), 1–14.

    Article  CAS  Google Scholar 

  • Chen, C.-Y., Chiang, C.-L., & Chen, C.-R. (2007). Removal of heavy metal ions by a chelating resin containing glycine as chelating groups. Separation and Purification Technology, 54, 396–403.

    Article  CAS  Google Scholar 

  • Chernikova, E., Terpugova, P., Bui, C., & Charleux, B. (2003). Effect of comonomer composition on the controlled free-radical copolymerization of styrene and maleic anhydride by reversible addition–fragmentation chain transfer (RAFT). Polymer, 44, 4101–4107.

    Article  CAS  Google Scholar 

  • Denizli, A., Kesenci, K., Arica, Y., & Pişkin, E. (2000). Dithiocarbamate-incorporated monosize polystyrene microspheres for selective removal of mercury ions. Reactive and Functional Polymers, 44, 235–243.

    Article  CAS  Google Scholar 

  • Dev, K. (1995). Preparation and analytical properties of a chelating resin containing bicine groups. Talanta, 42, 591–596. doi:10.1016/0039-9140(95)01452-H.

    Article  CAS  Google Scholar 

  • Dingman, J. F., Gloss, K. M., Milano, E. A., & Siggia, S. (1974). Concentration of heavy metals by complexation on dithiocarbamate resins. Analytical Chemistry, 46, 774–777.

    Article  CAS  Google Scholar 

  • Duran, A., Soylak, M., & Tuncel, S. A. (2008). Poly(vinyl pyridine-poly ethylene glycol methacrylate-ethylene glycol dimethacrylate) beads for heavy metal removal. Journal of Hazardous Materials, 155, 114–120.

    Article  CAS  Google Scholar 

  • El-Bahy, S. M., & El-Bahy, Z. M. (2016). Synthesis and characterization of polyamidoxime chelating resin for adsorption of Cu(II), Mn(II) and Ni(II) by batch and column study. Journal of Environmental Chemical Engineering, 4, 276–286.

    Article  CAS  Google Scholar 

  • Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management. doi:10.1016/j.jenvman.2010.11.011.

  • Fu, F., Zeng, H., Cai, Q., Qiu, R., Yu, J., & Xiong, Y. (2007). Effective removal of coordinated copper from wastewater using a new dithiocarbamate-type supramolecular heavy metal precipitant. Chemosphere, 69, 1783–1789.

    Article  CAS  Google Scholar 

  • Garg, B. S., Sharma, R. K., Bhojak, N., & Mittal, S. (1999). Chelating resins and their applications in the analysis of trace metal ions. Microchemical Journal, 61, 94–114.

    Article  CAS  Google Scholar 

  • Hokkanen, S., Repo, E., & Sillanpää, M. (2013). Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chemical Engineering Journal, 223, 40–47.

    Article  CAS  Google Scholar 

  • Inoue, K., Yoshizuka, K., & Ohto, K. (1999). Adsorptive separation of some metal ions by complexing agent types of chemically modified chitosan. Analytica Chimica Acta, 388, 209–218.

    Article  CAS  Google Scholar 

  • Jain, V. K., Sait, S. S., Shrivastav, P., & Agrawal, Y. K. (1997). Application of chelate forming resin Amberlite XAD-2-o-vanillinthiosemicarbazone to the separation and preconcentration of copper(II), zinc(II) and lead(II). Talanta, 45, 397–404.

    Article  CAS  Google Scholar 

  • Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68, 167–182.

    Article  Google Scholar 

  • Jing, X., Liu, F., Yang, X., Ling, P., Li, L., Long, C., et al. (2009). Adsorption performances and mechanisms of the newly synthesized N,N’-di (carboxymethyl) dithiocarbamate chelating resin toward divalent heavy metal ions from aqueous media. Journal of Hazardous Materials, 167, 589–596.

    Article  CAS  Google Scholar 

  • Kagaya, S., & Inoue, Y. (2014). Chelating materials immobilizing carboxymethylated pentaethylenehexamine and polyethyleneimine as ligands. Analytical Sciences, 30, 35–42.

    Article  CAS  Google Scholar 

  • Kagaya, S., Kajiwara, T., Gemmei-Ide, M., Kamichatani, W., & Inoue, Y. (2016). Chelating resin immobilizing carboxymethylated polyethyleneimine for selective solid-phase extraction of trace elements: effect of the molecular weight of polyethyleneimine and its carboxymethylation rate. Talanta, 147, 342–350.

    Article  CAS  Google Scholar 

  • Khajeh, M., Kaykhaii, M., Mirmoghaddam, M., & Hashami, H. (2009). Separation of zinc from aqueous samples using a molecular imprinting technique. International Journal of Environmental Analytical Chemistry, 89, 981–992.

    Article  CAS  Google Scholar 

  • Kumar, R., Kumar, M., Ahmad, R., & Barakat, M. A. (2013). l-Methionine modified Dowex-50 ion-exchanger of reduced size for the separation and removal of Cu(II) and Ni(II) from aqueous solution. Chemical Engineering Journal, 218, 32–38.

    Article  CAS  Google Scholar 

  • Lakherwal, D. (2014). Adsorption of heavy metals: a review. International Journal of Environmental Research and Development, 4, 41–48. doi:10.1007/s11270-007-9401-5.

    Google Scholar 

  • Li, J., Xu, Y., Wang, J., & Du, C. (2009). Synthesis of amphiphilic comb-shaped copolymers used for surface modification of pvdf membranes. Chinese Journal of Polymer Science, 27, 821–826.

    Article  CAS  Google Scholar 

  • Lin, Z., Zhang, Y., Chen, Y., & Qian, H. (2012). Extraction and recycling utilization of metal ions (Cu2+, Co2+ and Ni2+) with magnetic polymer beads. Chemical Engineering Journal, 200-202, 104–112.

    Article  CAS  Google Scholar 

  • Liu, B., Lv, X., Meng, X., Yu, G., & Wang, D. (2013a). Removal of Pb(II) from aqueous solution using dithiocarbamate modified chitosan beads with Pb(II) as imprinted ions. Chemical Engineering Journal, 220, 412–419.

    Article  CAS  Google Scholar 

  • Liu, L., Wu, J., Li, X., & Ling, Y. (2013b). Synthesis of poly(dimethyldiallylammonium chloride-co-acrylamide)-graft-triethylenetetramine–dithiocarbamate and its removal performance and mechanism of action towards heavy metal ions. Separation and Purification Technology, 103, 92–103.

    Article  CAS  Google Scholar 

  • Martins, A. O., da Silva, E. L., Carasek, E., Gonçalves, N. S., Laranjeira, M. C., & de Fávere, V. T. (2004). Chelating resin from functionalization of chitosan with complexing agent 8-hydroxyquinoline: application for metal ions on line preconcentration system. Analytica Chimica Acta, 521, 157–162.

    Article  CAS  Google Scholar 

  • Moore, E., & Pickelman, D. (1986). Synthesis of styrene/maleimide copolymers and physical properties thereof. Industrial and Chemical Engineering Product Research and Development, 25, 603–609.

    Article  CAS  Google Scholar 

  • Pehlivan, E., & Altun, T. (2006). The study of various parameters affecting the ion exchange of Cu2+, Zn2+, Ni2+, Cd2+, and Pb2+ from aqueous solution on Dowex 50W synthetic resin. Journal of Hazardous Materials, 134, 149–156.

    Article  CAS  Google Scholar 

  • Pramanik, S., Dhara, P. K., & Chattopadhyay, P. (2004). A chelating resin containing bis(2-benzimidazolylmethyl)amine: synthesis and metal-ion uptake properties suitable for analytical application. Talanta, 63, 485–490.

    Article  CAS  Google Scholar 

  • Rajput, R. S., Rupainwar, D. C., & Singh, A. (2009). A study on styrene maleic anhydride modification by benzoic acid derivatives and dimethyl sulfoxide. International Journal of ChemTech Research, 1(4).

  • Ritchie, S. M. C., Kissick, K. E., Bachas, L. G., Sikdar, S. K., Parikh, C., & Bhattacharyya, D. (2001). Polycysteine and other Polyamino acid functionalized microfiltration membranes for heavy metal capture. Environmental Science and Technology, 35, 3252–3258.

    Article  CAS  Google Scholar 

  • Rivas, B. L., & Seguel, G. V. (1999). Poly(acrylic acid-co-maleic acid)–metal complexes with copper(II), cobalt(II), and nickel(II). Polyhedron, 18, 2511–2518.

    Article  CAS  Google Scholar 

  • Roy, P. K., Rawat, A. S., & Rai, P. K. (2003). Synthesis, characterisation and evaluation of polydithiocarbamate resin supported on macroreticular styrene-divinylbenzene copolymer for the removal of trace and heavy metal ions. Talanta, 59, 239–246.

    Article  CAS  Google Scholar 

  • Roy, P. K., Rawat, A. S., Choudhary, V., & Rai, P. K. (2004). Removal of heavy metal ions using Polydithiocarbamate resin supported on polystyrene. Indian Journal of Chemical Technology, 11, 51–58.

    CAS  Google Scholar 

  • Sanders, G. C., Duchateau, R., Lin, C. Y., Coote, M. L., & Heuts, J. P. A. (2012). End-functional styrene–maleic anhydride copolymers via catalytic chain transfer polymerization. Macromolecules, 45, 5923–5933.

    Article  CAS  Google Scholar 

  • Shaaban, A. F., Fadel, D. A., Mahmoud, A. A., Elkomy, M. A., & Elbahy, S. M. (2013). Synthesis and characterization of dithiocarbamate chelating resin and its adsorption performance toward Hg(II), Cd(II) and Pb(II) by batch and fixed-bed column methods. Journal of Environmental Chemical Engineering, 1, 208–217.

    Article  CAS  Google Scholar 

  • Stewart, W. D. & Standen, J. H. (1952) Complex Amine Products With Dialkyl, Zinc Dithiocarbamates as Pesticides. US Patent, 2588428, 11 March.

  • Suponik, T., Winiarski, A., & Szade, J. (2015). Processes of removing zinc from water using zero-valent iron. Water, Air, and Soil Pollution. doi:10.1007/s11270-015-2617-x.

  • Tanco, M. L., Tanaka, D. A. P., Flores, V. C., Nagase, T., & Suzuki, T. M. (2002). Preparation of porous chelating resin containing linear polymer ligand and the adsorption characteristics for harmful metal ions. Reactive and Functional Polymers, 53, 91–101.

    Article  CAS  Google Scholar 

  • Tiwari, S., & Bajpai, A. (2005). Metal ion extraction by dithiocarbamate function supported on polyacrylamide. Reactive and Functional Polymers, 64, 47–54.

    Article  CAS  Google Scholar 

  • Tong, C., Ramelow, U. S., & Ramelow, G. J. (2006). Evaluation of polymeric supports for immobilizing biomass to prepare sorbent materials for metals. International Journal of Environmental Analytical Chemistry, 86, 175–191.

    Google Scholar 

  • Zhou, L., Wang, Y., Liu, Z., & Huang, Q. (2009). Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres. Journal of Hazardous Materials, 161, 995–1002.

    Article  CAS  Google Scholar 

  • Zhu, C., Liu, F., Xu, C., Gao, J., Chen, D., & Li, A. (2015). Enhanced removal of Cu(II) and Ni(II) from saline solution by novel dual-primary-amine chelating resin based on anion-synergism. Journal of Hazardous Materials, 287, 234–242.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Richard Back for his help in obtaining elemental analysis and to SUNY Oswego for funding the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fehmi Damkaci.

Ethics declarations

Funding

This work was supported by SUNY Oswego, Summer Challenge Grant 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarikahya, H., Scalzo, R.D., Alawaed, A. et al. Synthesis and Metal-Ion Uptake Properties of a New Dithiocarbamate-Base Resin. Water Air Soil Pollut 228, 286 (2017). https://doi.org/10.1007/s11270-017-3475-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3475-5

Keywords

Navigation