Advertisement

Electrochemical Degradation of Nonylphenol Ethoxylate-7 (NP7EO) Using a DiaClean® Cell Equipped with Boron-Doped Diamond Electrodes (BDD)

  • Katherine G. Armijos-Alcocer
  • Patricio J. Espinoza-Montero
  • Bernardo A. Frontana-Uribe
  • Carlos E. Barrera-Diaz
  • María C. Nevárez-Martínez
  • Greta C. Fierro-Naranjo
Article

Abstract

Nowadays, the increasing pollution of natural water effluents with surfactant, wetting, dispersing, and emulsifying agents which contain nonylphenol ethoxylate (NP7EO) is an emerging problem that has not received the enough attention. Currently, it is known that degrading this type of highly stable compounds is possible through advanced electrochemical oxidation (AEO), but the degradation of NP7EO has not been tested yet. Thus, this work carries out a study of the degradation of the NP7EO (500 mg L−1) through advanced electrochemical oxidation, using a DiaClean® cell, equipped with boron-doped diamond electrodes (BDD, 70 cm2). The cell operated in a recirculation system with a peristaltic pump, which allowed to control the electrolyte flow. The buffer media for degradation was NH4OH 0.1 M/HCl 0.05 M (pH 9.25). The effect of the current density (j = 20, 30, 40 mA cm−2) was studied, and the cell efficiency for each condition was evaluated. The degradation was followed by total organic carbon (TOC), chemical oxygen demand (COD), and absorbance. The cell potential was monitored to determine the operating costs. The best conditions for the mineralization of NP7EO (initial concentration = 500 mg L−1) were applying 40 mA cm−2 and at a flow rate of 12.6 L min−1 during 8 h of electrolysis, achieving a 90% of TOC removal. Therefore, this technology appears as a promising alternative for degrading surfactants like NP7EO in aqueous media.

Keywords

Onylphenol ethoxylate DiaClean® BDD Electrochemical advanced oxidation 

Notes

Acknowledgements

The Centro de Investigaciones y Control Ambiental de la Escuela Politécnica Nacional and the Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM for the funding for the development of this project. The technical support of María Citlalit Martínez Soto is recognized.

Supplementary material

11270_2017_3471_MOESM1_ESM.pdf (203 kb)
ESM 1 (PDF 202 kb)

References

  1. Ahel, M., Giger, W., & Koch, M. (1994a). Behaviour of alkylphenol polyethoxylate surfactants in the aquatic environment—I. Occurrence and transformation in sewage treatment. Water Research, 28(5), 1131–1142. doi: 10.1016/0043-1354(94)90200-3.CrossRefGoogle Scholar
  2. Ahel, M., Giger, W., & Schaffner, C. (1994b). Behaviour of alkylphenol polyethoxylate surfactants in the aquatic environment—II. Occurrence and transformation in rivers. Water Research, 28(5), 1143–1152. doi: 10.1016/0043-1354(94)90201-1.CrossRefGoogle Scholar
  3. Akrout, H., Jellali, S., & Bousselmi, L. (2015). Enhancement of methylene blue removal by anodic oxidation using BDD electrode combined with adsorption onto sawdust. Comptes Rendus Chimie, 18(1), 110–120. doi: 10.1016/j.crci.2014.09.006.CrossRefGoogle Scholar
  4. APHA-AWWA-WPCF (2005). Standard Methods for the Examination of Water and Wastewater, 21st edition. Washington DC: American Public Health Association, American Water Works Association, Water Pollution Control Federation.Google Scholar
  5. Ayorinde, F. O., Hambright, P., Porter, T. N., & Keith, Q. L. (1999). Use of meso-tetrakis (pentafluorophenyl) porphyrin as a matrix for low molecular weight alkylphenol ethoxylates in laser desorption/ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 13(24), 2474–2479. doi: 10.1002/(SICI)1097-0231(19991230)13:24<2474::AID-RCM814>3.0.CO;2-0.CrossRefGoogle Scholar
  6. Brillas, E. (2014). Electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton treatments of organics in waters using a boron-doped diamond anode: a review. Journal of the Mexican Chemical Society, 58, 239–255.Google Scholar
  7. Campos-González, E., Frontana-Uribe, B. A., Vasquez-Medrano, R., Macías-Bravo, S., & Ibánez, J. G. (2014). Advanced electrochemical oxidation of methyl parathion at boron-doped diamond electrodes. Journal of the Mexican Chemical Society, 58, 315–321.Google Scholar
  8. Chen, T.-S., Chen, P.-H., & Huang, K.-L. (2014). Electrochemical degradation of N,N-diethyl-m-toluamide on a boron-doped diamond electrode. Journal of the Taiwan Institute of Chemical Engineers, 45(5), 2615–2621. doi: 10.1016/j.jtice.2014.06.020.CrossRefGoogle Scholar
  9. Ciorba, G. A., Radovan, C., Vlaicu, I., & Masu, S. (2002). Removal of nonylphenol ethoxylates by electrochemically-generated coagulants. Journal of Applied Electrochemistry, 32(5), 561–567. doi: 10.1023/a:1016577230769.CrossRefGoogle Scholar
  10. Colborn, T., Meyers, J. P., & Dumanoski, D. (1997). Nuestro futuro robado: Ecoespaña. http://www.informativos.net/public/images/textos/Nuestro%20futuro%20robado.pdf. Accessed 18 July 2017.
  11. Cox, C. (2002). Pyrethrins/pyrethrum. Journal of Pesticide Reform, 22, 14–20.Google Scholar
  12. Cserháti, T. (1995). Alkyl ethoxylated and alkylphenol ethoxylated nonionic surfactants: interaction with bioactive compounds and biological effects. Environmental Health Perspectives, 103(4), 358–364.CrossRefGoogle Scholar
  13. da Silva, S. W., Klauck, C. R., Siqueira, M. A., & Bernardes, A. M. (2015). Degradation of the commercial surfactant nonylphenol ethoxylate by advanced oxidation processes. Journal of Hazardous Materials, 282, 241–248. doi: 10.1016/j.jhazmat.2014.08.014.CrossRefGoogle Scholar
  14. Ekdal, A. (2014). Fate of nonylphenol ethoxylate (NPEO) and its inhibitory impact on the biodegradation of acetate under aerobic conditions. Environmental Technology, 35(5–8), 741–748. doi: 10.1080/09593330.2013.848939.CrossRefGoogle Scholar
  15. Enciso, R., Espinoza-Montero, P. J., Frontana-Uribe, B. A., Delgadillo, J. A., & Rodríguez-Torres, I. (2013). Theoretical analysis of the velocity profiles in a Diacell® cell applying computational fluid dynamics. ECS Transactions, 47(1), 13–23.CrossRefGoogle Scholar
  16. Espinoza-Montero, P. J., Vasquez-Medrano, R., Ibanez, J. G., & Frontana-Uribe, B. A. (2013). Efficient anodic degradation of phenol paired to improved cathodic production of H2O2 at BDD electrodes. Journal of the Electrochemical Society, 160(7), G3171–G3177. doi: 10.1149/2.027307jes.CrossRefGoogle Scholar
  17. Fries, E. (2004). Occurrence of 4-Nonylphenol in rain and snow. Atmospheric Environment, 38(13), 2013–2016. doi: 10.1016/j.atmosenv.2004.01.013.CrossRefGoogle Scholar
  18. Gao, D., Li, Z., Guan, J., Li, Y., & Ren, N. (2014). Removal of surfactants nonylphenol ethoxylates from municipal sewage-comparison of an A/O process and biological aerated filters. Chemosphere, 97, 130–134. doi: 10.1016/j.chemosphere.2013.10.083.CrossRefGoogle Scholar
  19. John, D. M., House, W. A., & White, G. F. (2000). Environmental fate of nonylphenol ethoxylates: differential adsorption of homologs to components of river sediment. Environmental Toxicology and Chemistry, 19(2), 293–300. doi: 10.1002/etc.5620190207.CrossRefGoogle Scholar
  20. Madsen, H. T., Sogaard, E. G., & Muff, J. (2014). Study of degradation intermediates formed during electrochemical oxidation of pesticide residue 2,6-dichlorobenzamide (BAM) at boron doped diamond (BDD) and platinum-iridium anodes. Chemosphere, 109, 84–91. doi: 10.1016/j.chemosphere.2014.03.020.CrossRefGoogle Scholar
  21. Marselli, B., Garcia-Gomez, J., Michaud, P. A., Rodrigo, M. A., & Comninellis, C. (2003). Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. Journal of the Electrochemical Society, 150(3), D79. doi: 10.1149/1.1553790.CrossRefGoogle Scholar
  22. Martínez, M. T., Torres, E., & Soto, J. A. (2004). Evaluation of compact heat exchangers of finned tubes. Informacion Tecnologica, 15, 47–54.Google Scholar
  23. Martins, A. F., Wilde, M. L., Vasconcelos, T. G., & Henriques, D. M. (2006). Nonylphenol polyethoxylate degradation by means of electrocoagulation and electrochemical Fenton. Separation and Purification Technology, 50(2), 249–255. doi: 10.1016/j.seppur.2005.11.032.CrossRefGoogle Scholar
  24. Panizza, M., Brillas, E., & Comninellis, C. (2008). Application of boron-doped diamond electrodes for wastewater treatment. Journal of Environment Engineering Management, 18(3), 139–153.Google Scholar
  25. Pysmennyy, Y. (2007). Manual para el cálculo de Intercambiadores de calor y bancos de tubos aletados: Cálculo de la transmisión de calor (pp. 6-20). Madrid: RevertéGoogle Scholar
  26. Robles Dávila, L., Valdés Mejía, J. F., Ortiz Arredondo, F., & Martínez García, L. (2008). Alternative to remove nonylphenol ethoxylate from industrial wastewater by a coupled process: physicochemical, advanced oxidation and adsorption. web.uaemex.mx/Red_Ambientales/docs/congresos/Ciudad%20Obregon/TECNOLOGIA_Y_BIOTECNOLOGIA_AMBIENTAL/TBA035.doc (Congress).
  27. Schrank, S. G. (2003). Treatment of effluents from the leather industry through advanced oxidation processes. Florianópolis: Universidad Federal de Santa Catarina.Google Scholar
  28. Soto, A. M., Justicia, H., Wray, J. W., & Sonnenschein, C. (1991). p-Nonyl-phenol: an estrogenic xenobiotic released from “modified” polystyrene. Environmental Health Perspectives, 92, 167–173.CrossRefGoogle Scholar
  29. Souza, F. L., Saéz, C., Lanza, M. R. V., Cañizares, P., & Rodrigo, M. A. (2015). Removal of herbicide 2,4-D using conductive-diamond sono-electrochemical oxidation. Separation and Purification Technology, 149, 24–30. doi: 10.1016/j.seppur.2015.05.018.CrossRefGoogle Scholar
  30. Vincent, J., Rello, J., Marshall, J., et al. (2009). International study of the prevalence and outcomes of infection in intensive care units. JAMA, 302(21), 2323–2329. doi: 10.1001/jama.2009.1754.CrossRefGoogle Scholar
  31. Weiss, E., Groenen-Serrano, K., & Savall, A. (2007). A comparison of electrochemical degradation of phenol on boron doped diamond and lead dioxide anodes. Journal of Applied Electrochemistry, 38(3), 329–337. doi: 10.1007/s10800-007-9442-x.CrossRefGoogle Scholar
  32. Yu, Y., Zhai, H., Hou, S., & Sun, H. (2009). Nonylphenol ethoxylates and their metabolites in sewage treatment plants and rivers of Tianjin, China. Chemosphere, 77(1), 1–7. doi: 10.1016/j.chemosphere.2009.06.036.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Katherine G. Armijos-Alcocer
    • 1
  • Patricio J. Espinoza-Montero
    • 1
  • Bernardo A. Frontana-Uribe
    • 2
    • 3
  • Carlos E. Barrera-Diaz
    • 2
  • María C. Nevárez-Martínez
    • 1
  • Greta C. Fierro-Naranjo
    • 1
  1. 1.Centro de Investigaciones y Control Ambiental, Departamento de Ingenieria Civil y AmbientalEscuela Politécnica NacionalQuitoEcuador
  2. 2.Centro Conjunto de Investigación en Química Sustentable UAEM-UNAMTolucaMexico
  3. 3.Instituto de QuímicaUniversidad Autónoma de MéxicoMéxico D.FMexico

Personalised recommendations