Advertisement

Removal of Arsenic and Iron from Acidic Water Using Zeolite and Limestone: Batch and Column Studies

  • K. Lizama-Allende
  • D. Henry-Pinilla
  • D. E. Diaz-Droguett
Article

Abstract

Zeolite and limestone were tested for their capability of removing As and Fe from acidic water in batch and column experiments. Synthetic acidic water with 3 mg/L As and 50 or 100 mg/L Fe at pH = 2 was used in the column experiments. In the batch experiments, the As concentration, the mass of media, and the contact time were varied between 0.2 and 5 mg As/L, 0.5 and 50 g, and 0.25 and 42 h, respectively. Maximum As sorption capacity as indicated by the Langmuir model was 0.17 mg/g for zeolite and 1.3 mg/g for limestone, at 18-h contact time and 6.3 g/L medium concentration. Energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy analyses revealed that As and Fe were retained in zeolite at the end of the batch experiments. The main factors affecting As and Fe removal efficiency and pH raising capacity were the contact time and the media concentration. This was confirmed in the column experiments, since zeolite and limestone columns presented 99% As removal, under a hydraulic loading rate of 21.8 mm/day. However, limestone columns presented a higher Fe removal: 99 versus 73% for zeolite. The results indicate that limestone could be more appropriate than zeolite when As and Fe are present under acidic conditions, given its higher capacity to remove both As and Fe and to raise pH.

Keywords

Arsenic removal Zeolite Limestone Sorption Water treatment Acidic water 

Notes

Acknowledgements

We thank Prof. Francisco Gracia from the Department of Chemical Engineering and Biotechnology, Universidad de Chile, for the BET analyses; Prof. César Pastén from the Department of Civil Engineering for the media characterization; Andrés Ibáñez from the Physics Department for the XRD analyses; Fernando Guzmán and Prof. Víctor Fuenzalida from the Physics Department for the XPS analyses; and Christian Nievas from the Andean Geothermal Centre of Excellence (CEGA) for the EDS analyses. We also thank Viviana Lorca and Natalia Fuentes for their support in the experiments, Felipe Proschle and José Ayala for their cooperation in some sections of the manuscript, and Prof. Marcelo Olivares for his comments on an early version of this manuscript.

Funding

This work was supported by the Department of Civil Engineering, the Concurso U-Inicia VID 2014, Universidad de Chile, and by CONICYT FONDECYT initiation into research grant 11150401.

Supplementary material

11270_2017_3466_MOESM1_ESM.pdf (424 kb)
ESM 1 (PDF 423 kb)

References

  1. Armienta, M. A., Micete, S., & Flores-Valverde, E. (2009). Feasibility of arsenic removal from contaminated water using indigenous limestone. In J. Bundschuh, M. A. Armienta, P. Birkle, P. Bhattacharya, J. Matschullat, & A. B. Mukherjee (Eds.), Natural arsenic in groundwaters of Latin America (pp. 505–510, Interdisciplinary Books Arsenic in the Environment, Vol. 1). Lisse, The Netherlands: CRC Press/Balkema Publishers.Google Scholar
  2. Armienta, M. A., Villaseñor, G., Cruz, O., Ceniceros, N., Aguayo, A., & Morton, O. (2012). Geochemical processes and mobilization of toxic metals and metalloids in an As-rich base metal waste pile in Zimapán, Central Mexico. Applied Geochemistry, 27(11), 2225–2237. doi: 10.1016/j.apgeochem.2012.01.015.CrossRefGoogle Scholar
  3. Baskan, M. B., & Pala, A. (2014). Batch and fixed-bed column studies of arsenic adsorption on the natural and modified clinoptilolite. Water, Air, and Soil Pollution, 225(1). doi: 10.1007/s11270-013-1798-4.
  4. Bakatula, E. N., Molaudzi, R., Nekhunguni, P., & Tutu, H. (2017). The removal of arsenic and uranium from aqueous solutions by sorption onto iron oxide-coated zeolite (IOCZ). Water, Air, and Soil Pollution, 228.Google Scholar
  5. Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60(2), 309–319.CrossRefGoogle Scholar
  6. Canga, E., Kjaergaard, C., Iversen, B. V., & Heckrath, G. J. (2016). Agricultural drainage filters. I. Filter hydro-physical properties and tracer transport. Water, Air, and Soil Pollution, 227.Google Scholar
  7. Cederkvist, K., Holm, P. E., & Jensen, M. B. (2010). Full-scale removal of arsenate and chromate from water using a limestone and ochreous sludge mixture as a low-cost sorbent material. Water Environment Research, 82(5), 401–408. doi: 10.2175/106143009X12487095237314.CrossRefGoogle Scholar
  8. Cravotta III, C. A. (2010). Abandoned mine drainage in the Swatara Creek Basin, Southern Anthracite Coalfield, Pennsylvania, USA: 2. Performance of treatment systems. Mine Water and the Environment, 29(3), 200–216. doi: 10.1007/s10230-010-0113-5.CrossRefGoogle Scholar
  9. Cravotta III, C. A., & Trahan, M. K. (1999). Limestone drains to increase pH and remove dissolved metals from acidic mine drainage. Applied Geochemistry, 14(5), 581–606.CrossRefGoogle Scholar
  10. Croghan, C. W., & Egeghy, P. P. (2003). Methods of dealing with values below the limit of detection using SAS. Presented at Southeastern SAS User Group, St. Petersburg, FL, September 22–24, 2003.Google Scholar
  11. Chutia, P., Kato, S., Kojima, T., & Satokawa, S. (2009). Arsenic adsorption from aqueous solution on synthetic zeolites. Journal of Hazardous Materials, 162(1), 440–447.CrossRefGoogle Scholar
  12. Davis, A., Webb, C., Dixon, D., Sorensen, J., & Dawadi, S. (2007). Arsenic removal from drinking water by limestone-based material. Mining Engineering, 59(2), 71–74.Google Scholar
  13. Elizalde-González, M. P., Mattusch, J., Einicke, W. D., & Wennrich, R. (2001). Sorption on natural solids for arsenic removal. Chemical Engineering Journal, 81(1–3), 187–195.CrossRefGoogle Scholar
  14. Groudev, S., Georgiev, P., Spasova, I., & Nicolova, M. (2008). Bioremediation of acid mine drainage in a uranium deposit. Hydrometallurgy, 94(1–4), 93–99.CrossRefGoogle Scholar
  15. Guerra, P., Gonzalez, C., Escauriaza, C., Pizarro, G., & Pasten, P. (2016). Incomplete mixing in the fate and transport of arsenic at a river affected by acid drainage. Water, Air, & Soil Pollution, 227, (3). doi: 10.1007/s11270-016-2767-5.
  16. IBM Corporation. (2013). SPSS statistics (p. 22).Google Scholar
  17. Inskeep, W. P., McDermott, T. R., & Fendorf, S. (2002). Arsenic (V)/(III) cycling in soils and natural waters: Chemical and microbiological processes. In W. T. Frankenberg Jr. (Ed.), Environmental chemistry of arsenic (pp. 183–215). New York: Marcel Dekker, Inc..Google Scholar
  18. Jain, C. K., & Singh, R. D. (2012). Technological options for the removal of arsenic with special reference to South East Asia. Journal of Environmental Management, 107, 1–18. doi: 10.1016/j.jenvman.2012.04.016.CrossRefGoogle Scholar
  19. Jeon, C. S., Baek, K., Park, J. K., Oh, Y. K., & Lee, S. D. (2009). Adsorption characteristics of As(V) on iron-coated zeolite. Journal of Hazardous Materials, 163(2–3), 804–808. doi: 10.1016/j.jhazmat.2008.07.052.CrossRefGoogle Scholar
  20. Kadlec, R. H., & Wallace, S. D. (2009). Treatment wetlands (second ed.). Boca Raton, FL: CRC Press.Google Scholar
  21. Kröpfelová, L., Vymazal, J., Švehla, J., & Štíchová, J. (2009). Removal of trace elements in three horizontal sub-surface flow constructed wetlands in the Czech Republic. Environmental Pollution, 157(4), 1186–1194. doi: 10.1016/j.envpol.2008.12.003.CrossRefGoogle Scholar
  22. Labastida, I., Armienta, M. A., Lara-Castro, R. H., Aguayo, A., Cruz, O., & Ceniceros, N. (2013). Treatment of mining acidic leachates with indigenous limestone, Zimapan Mexico. Journal of Hazardous Materials, 262, 1187–1195.CrossRefGoogle Scholar
  23. Leiva, E. D., Rámila, C. D., Vargas, I. T., Escauriaza, C. R., Bonilla, C. A., Pizarro, G. E., et al. (2014). Natural attenuation process via microbial oxidation of arsenic in a high Andean watershed. Science of the Total Environment, 466-467, 490–502. doi: 10.1016/j.scitotenv.2013.07.009.CrossRefGoogle Scholar
  24. Li, Z., Jean, J. S., Jiang, W. T., Chang, P. H., Chen, C. J., & Liao, L. (2011). Removal of arsenic from water using Fe-exchanged natural zeolite. Journal of Hazardous Materials, 187(1–3), 318–323. doi: 10.1016/j.jhazmat.2011.01.030.CrossRefGoogle Scholar
  25. Liu, G., & Cai, Y. (2007). Chapter 31 Arsenic speciation in soils: an analytical challenge for understanding arsenic biogeochemistry. In R. D. Dibyendu Sarkar, & H. Robyn (Eds.), Developments in environmental science (pp. 685–708): Elsevier.Google Scholar
  26. Lizama, A. K., Fletcher, T. D., & Sun, G. (2011a). Removal processes for arsenic in constructed wetlands. Chemosphere, 84(8), 1032–1043. doi: 10.1016/j.chemosphere.2011.04.022.CrossRefGoogle Scholar
  27. Lizama, A. K., Fletcher, T. D., & Sun, G. (2011b). Enhancing the removal of arsenic, boron and heavy metals in subsurface flow constructed wetlands using different supporting media. Water Science and Technology, 63(11), 2612–2618. doi: 10.2166/wst.2011.533.CrossRefGoogle Scholar
  28. Lizama, A. K., Fletcher, T. D., & Sun, G. (2012). The effect of substrate media on the removal of arsenic, boron and iron from an acidic wastewater in planted column reactors. Chemical Engineering Journal, 179, 119–130. doi: 10.1016/j.cej.2011.10.069.CrossRefGoogle Scholar
  29. Lizama, A. K., McCarthy, D. T., & Fletcher, T. D. (2014). The influence of media type on removal of arsenic, iron and boron from acidic wastewater in horizontal flow wetland microcosms planted with Phragmites australis. Chemical Engineering Journal, 246(0), 217–228. doi: 10.1016/j.cej.2014.02.035. CrossRefGoogle Scholar
  30. Marchand, L., Mench, M., Jacob, D. L., & Otte, M. L. (2010). Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: a review. Environmental Pollution, 158(12), 3447–3461.CrossRefGoogle Scholar
  31. Marshall, G., Ferreccio, C., Yuan, Y., Bates, M. N., Steinmaus, C., Selvin, S., et al. (2007). Fifty-year study of lung and bladder cancer mortality in Chile related to arsenic in drinking water. Journal of the National Cancer Institute, 99(12), 920–928. doi: 10.1093/jnci/djm004.CrossRefGoogle Scholar
  32. Motsi, T. (2010). Remediation of acid mine drainage using natural zeolite. University of Birmingham.Google Scholar
  33. Motsi, T., Rowson, N. A., & Simmons, M. J. H. (2009). Adsorption of heavy metals from acid mine drainage by natural zeolite. International Journal of Mineral Processing, 92(1–2), 42–48. doi: 10.1016/j.minpro.2009.02.005.CrossRefGoogle Scholar
  34. Nilsson, L., Pettersson, S., & Sandstrom, A. (1994). Iron and arsenic removal from bacterial leaching effluents by precipitation with limestone. Scandinavian Journal of Metallurgy, 23(4), 184–189.Google Scholar
  35. Ocinski, D., Jacukowicz-Sobala, I., Mazur, P., Raczyk, J., & Kociolek-Balawejder, E. (2016). Water treatment residuals containing iron and manganese oxides for arsenic removal from water—characterization of physicochemical properties and adsorption studies. Chemical Engineering Journal, 294, 210–221. doi: 10.1016/j.cej.2016.02.111.CrossRefGoogle Scholar
  36. Olmos-Márquez, M. A., Alarcón-Herrera, M. T., & Martín-Domínguez, I. R. (2012). Performance of Eleocharis macrostachya and its importance for arsenic retention in constructed wetlands. Environmental Science and Pollution Research, 19(3), 763–771. doi: 10.1007/s11356-011-0598-x.CrossRefGoogle Scholar
  37. Pagnanelli, F., De Michelis, I., Di Tommaso, M., Ferella, F., Toro, L., & Vegliò, F. (2011). Treatment of acid mine drainage by a combined chemical/biological column apparatus: mechanisms of heavy metal removal. In Mine drainage and related problems (pp. 239-263): Nova science publishers, Inc.Google Scholar
  38. Payne, K. B., & Abdel-Fattah, T. M. (2005). Adsorption of arsenate and arsenite by iron-treated activated carbon and zeolites: effects of pH, temperature, and ionic strength. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 40(4), 723–749.CrossRefGoogle Scholar
  39. Qin, C., Liu, L., Han, Y., Chen, C., & Lan, Y. (2016). Mesoporous magnetic ferrum-yttrium binary oxide: a novel adsorbent for efficient arsenic removal from aqueous solution. Water, Air, and Soil Pollution, 227(9). doi: 10.1007/s11270-016-3032-7.
  40. Rahman, K. Z., Wiessner, A., Kuschk, P., van Afferden, M., Mattusch, J., & Müller, R. A. (2011). Fate and distribution of arsenic in laboratory-scale subsurface horizontal-flow constructed wetlands treating an artificial wastewater. Ecological Engineering, 37(8), 1214–1224.CrossRefGoogle Scholar
  41. Romero, F. M., Armienta, M. A., & Carrillo-Chavez, A. (2004). Arsenic sorption by carbonate-rich aquifer material, a control on arsenic mobility at Zimapán, México. Archives of Environmental Contamination and Toxicology, 47(1), 1–13.CrossRefGoogle Scholar
  42. Romero, F. M., Núñez, L., Gutiérrez, M. E., Armienta, M. A., & Ceniceros-Gómez, A. E. (2011). Evaluation of the potential of indigenous calcareous shale for neutralization and removal of arsenic and heavy metals from acid mine drainage in the Taxco mining area, Mexico. Archives of Environmental Contamination and Toxicology, 60(2), 191–203. doi: 10.1007/s00244-010-9544-z.CrossRefGoogle Scholar
  43. Saeed, T., & Sun, G. (2011). Enhanced denitrification and organics removal in hybrid wetland columns: Comparative experiments. Bioresource Technology, 102(2), 967–974. doi: 10.1016/j.biortech.2010.09.056.CrossRefGoogle Scholar
  44. Sáez, P. B., & Rittmann, B. E. (1992). Model-parameter estimation using least squares. Water Research, 26(6), 789–796. doi: 10.1016/0043-1354(92)90010-2.CrossRefGoogle Scholar
  45. Sakadevan, K., & Bavor, H. J. (1998). Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems. Water Research, 32(2), 393–399.CrossRefGoogle Scholar
  46. Santomartino, S., & Webb, J. A. (2007). Estimating the longevity of limestone drains in treating acid mine drainage containing high concentrations of iron. Applied Geochemistry, 22(11), 2344–2361.CrossRefGoogle Scholar
  47. Sarkar, A., & Paul, B. (2016). The global menace of arsenic and its conventional remediation—a critical review. Chemosphere, 158, 37–49.CrossRefGoogle Scholar
  48. Schwindaman, J. P., Castle, J. W., & Rodgers, J. H. (2014). Biogeochemical process-based design and performance of a pilot-scale constructed wetland for arsenic removal from simulated Bangladesh groundwater. Water, Air, & Soil Pollution, 225(6), 2009. doi: 10.1007/s11270-014-2009-7.CrossRefGoogle Scholar
  49. Sheoran, A. S., & Sheoran, V. (2006). Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Minerals Engineering, 19(2), 105–116.CrossRefGoogle Scholar
  50. Šiljeg, M., Foglar, L., & Gudelj, I. (2012). The removal of arsenic from water with natural and modified clinoptilolite. Chemistry and Ecology, 28(1), 75–87. doi: 10.1080/02757540.2011.619531.CrossRefGoogle Scholar
  51. Šiljeg, M., Stefanovic, S. C., Mazaj, M., Tušar, N. N., Arcon, I., Kovac, J., et al. (2009). Structure investigation of As(III)- and As(V)-species bound to Fe-modified clinoptilolite tuffs. Microporous and Mesoporous Materials, 118(1–3), 408–415. doi: 10.1016/j.micromeso.2008.09.009.Google Scholar
  52. Simsek, E. B., & Beker, U. (2014). Equilibrium arsenic adsorption onto metallic oxides : isotherm models, error analysis and removal mechanism. Korean Journal of Chemical Engineering, 31(11), 2057–2069. doi: 10.1007/s11814-014-0176-2.CrossRefGoogle Scholar
  53. Singh, R., Singh, S., Parihar, P., Singh, V. P., & Prasad, S. M. (2015). Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicology and Environmental Safety, 112, 247–270. doi: 10.1016/j.ecoenv.2014.10.009.CrossRefGoogle Scholar
  54. Snoeyink, V. L., & Jenkins, D. (1980). Water chemistry. New York: John Wiley & Sons.Google Scholar
  55. Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry: chemical equilibria and rates in natural waters (3ed ed.). John Wiley & Sons, INC.Google Scholar
  56. Wallace, S. D., & Knight, R. (2006). Small-scale constructed wetland treatment systems: feasibility, design criteria, and O&M requirements. Final report (p. 350). Alexandria, VA: Water Environment Research Foundation (WERF) and IWA Publishing.Google Scholar
  57. Wang, J. W., Bejan, D., & Bunce, N. J. (2003). Removal of arsenic from synthetic acid mine drainage by electrochemical pH adjustment and coprecipitation with iron hydroxide. Environmental Science and Technology, 37(19), 4500–4506.CrossRefGoogle Scholar
  58. Wichterlová, B., Kubelková, L., Nováková, J., & Jíru, P. (1982). Behaviour of Fe species in zeolite structure. Studies in Surface Science and Catalysis, 12, 143–150.CrossRefGoogle Scholar
  59. Williams, M. (2001). Arsenic in mine waters: international study. Environmental Geology, 40(3), 267–278.CrossRefGoogle Scholar
  60. Wium-Andersen, T., Nielsen, A. H., Hvitved-Jacobsen, T., Kristensen, N. K., Brix, H., Arias, C., et al. (2012). Sorption media for stormwater treatment—a laboratory evaluation of five low-cost media for their ability to remove metals and phosphorus from artificial stormwater. Water Environment Research, 84(7), 605–616. doi: 10.2175/106143012X13373550426832.CrossRefGoogle Scholar
  61. World Health Organization (2011). Guidelines for drinking-water quality, fourth edition. http://www.who.int/water_sanitation_health/publications/2011/dwq_guidelines/en/ . Accessed 22 September 2016.
  62. Zipper, C. E., & Skousen, J. G. (2010). Influent water quality affects performance of passive treatment systems for acid mine drainage. Mine Water and the Environment, 29(2), 135–143. doi: 10.1007/s10230-010-0101-9.CrossRefGoogle Scholar
  63. Zurita, F., Del Toro-Sánchez, C. L., Gutierrez-Lomelí, M., Rodriguez-Sahagún, A., Castellanos-Hernandez, O. A., Ramírez-Martínez, G., et al. (2012). Preliminary study on the potential of arsenic removal by subsurface flow constructed mesocosms. Ecological Engineering, 47, 101–104. doi: 10.1016/j.ecoleng.2012.06.018.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversidad de ChileSantiagoChile
  2. 2.Institute of Physics, Facultad de FísicaPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations