Skip to main content
Log in

Reaction Mechanism and Degradation Pathway of Rhodamine 6G by Photocatalytic Treatment

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The photocatalytic degradation of a cationic dye, rhodamine 6G (Rh-6G) under UV light irradiation was carried out. Rh-6G was completely decolorized in 180 min of photo-oxidative degradation period. The extent of degradation was confirmed performing total organic carbon (TOC) analysis, and up to 90.14%, TOC removal was achieved. Several critical analytical techniques including UV-Vis spectroscopy, high-performance liquid chromatography (HPLC), and ultra-performance liquid chromatography coupled with electrospray ionization mass spectrometry (UPLC/MS) were employed to scrutinize the mechanistic insights of the dye photodegradation. The degraded N-demethylation intermediates and several small molecular products were qualitatively identified, and a tentative photodegradation pathway was proposed. Toxicological evaluation of the degradation products was carried out three types of cell lines (MTT assay) and Triticum sativum seeds. In conclusion, enhanced biodegradability accompanied by toxicity reduction confirmed the promising efficiency of photocatalysis for Rh-6G degradation and therefore could be used for the remediation of textile effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alford, R., Simpson, H. M., Duberman, J., Hill, G. C., Ogawa, M., Regino, C., et al. (2009). Toxicity of organic fluorophores used in molecular imaging: literature review. Molecular Imaging, 8(6), 7290–2009.

    Google Scholar 

  • Bafana, A., Chakrabarti, T., & Devi, S. S. (2008). Azoreductase and dye detoxification activities of Bacillus velezensis strain AB. Applied Microbiology and Biotechnology, 77(5), 1139–1144.

    Article  CAS  Google Scholar 

  • Basha, C. A., Bhadrinarayana, N. S., Anantharaman, N., & Begum, K. M. S. (2008). Heavy metal removal from copper smelting effluent using electrochemical cylindrical flow reactor. Journal of Hazardous Materials, 152(1), 71–78.

    Article  Google Scholar 

  • Bayramoglu, M., Kobya, M., Can, O. T., & Sozbir, M. (2004). Operating cost analysis of electrocoagulation of textile dye wastewater. Separation and Purification Technology, 37(2), 117–125.

    Article  CAS  Google Scholar 

  • Bilal, M., Iqbal, H. M. N., Shah, S. Z. H., Hu, H., Wang, W., & Zhang, X. (2016). Horseradish peroxidase-assisted approach to decolorize and detoxify dye pollutants in a packed bed bioreactor. Journal of Environmental Management, 183, 836–842.

    Article  CAS  Google Scholar 

  • Bilal, M., Asgher, M., Iqbal, H. M. N., Hu, H., & Zhang, X. (2017a). Bio-based degradation of emerging endocrine-disrupting and dye-based pollutants using cross-linked enzyme aggregates. Environmental Science and Pollution Research, 24(8), 7035–7041.

    Article  CAS  Google Scholar 

  • Bilal, M., Asgher, M., Iqbal, H. M. N., Hu, H., Wang, W., & Zhang, X. (2017b). Bio-catalytic performance and dye-based industrial pollutants degradation potential of agarose-immobilized MnP using a Packed Bed Reactor System. International Journal of Biological Macromolecules, 102, 582–590.

    Article  CAS  Google Scholar 

  • Bilal, M., Iqbal, H. M. N., Hu, H., Wang, W., & Zhang, X. (2017c). Enhanced bio-catalytic performance and dye degradation potential of chitosan-encapsulated horseradish peroxidase in a packed bed reactor system. Science of the Total Environment, 575, 1352–1360.

    Article  CAS  Google Scholar 

  • Can, O. T., Kobya, M., Demirbas, E., & Bayramoglu, M. (2006). Treatment of the textile wastewater by combined electrocoagulation. Chemosphere, 62(2), 181–187.

    Article  CAS  Google Scholar 

  • Chatha, S. A. S., Asgher, M., & Iqbal, H. M. N. (2017). Enzyme-based solutions for textile processing and dye contaminant biodegradation—a review. Environmental Science and Pollution Research, 24, 14005–14018.

    Article  Google Scholar 

  • Chen, C., Zhao, W., Lei, P., Zhao, J., & Serpone, N. (2004). Photosensitized degradation of dyes in polyoxometalate solutions versus TiO2 dispersions under visible-light irradiation: mechanistic implications. Chemistry--A European Journal, 10(8), 1956–1965.

    Article  CAS  Google Scholar 

  • Cuiping, B., Xianfeng, X., Wenqi, G., Dexin, F., Mo, X., Zhongxue, G., & Nian, X. (2011). Removal of rhodamine B by ozone-based advanced oxidation process. Desalination, 278(1), 84–90.

    Article  Google Scholar 

  • Daneshvar, N., Sorkhabi, H. A., & Kasiri, M. B. (2004). Decolorization of dye solution containing Acid Red 14 by electrocoagulation with a comparative investigation of different electrode connections. Journal of Hazardous Materials, 112(1), 55–62.

    Article  CAS  Google Scholar 

  • Fanchiang, J. M., & Tseng, D. H. (2009). Degradation of anthraquinone dye CI Reactive Blue 19 in aqueous solution by ozonation. Chemosphere, 77(2), 214–221.

    Article  CAS  Google Scholar 

  • Fischer, D., Li, Y., Ahlemeyer, B., Krieglstein, J., & Kissel, T. (2003). In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials, 24(7), 1121–1131.

    Article  CAS  Google Scholar 

  • Ghazzal, M. N., Kebaili, H., Joseph, M., Debecker, D. P., Eloy, P., De Coninck, J., & Gaigneaux, E. M. (2012). Photocatalytic degradation of Rhodamine 6G on mesoporous titania films: combined effect of texture and dye aggregation forms. Applied Catalysis B: Environmental, 115, 276–284.

    Article  Google Scholar 

  • Intarasuwan, K., Amornpitoksuk, P., Suwanboon, S., & Graidist, P. (2017). Photocatalytic dye degradation by ZnO nanoparticles prepared from X 2 C 2 O 4 (X= H, Na and NH 4) and the cytotoxicity of the treated dye solutions. Separation and Purification Technology, 177, 304–312.

    Article  CAS  Google Scholar 

  • Jonstrup, M., Punzi, M., & Mattiasson, B. (2011). Comparison of anaerobic pre-treatment and aerobic post-treatment coupled to photo-Fenton oxidation for degradation of azo dyes. Journal of Photochemistry and Photobiology A: Chemistry, 224(1), 55–61.

    Article  CAS  Google Scholar 

  • Lee, Y. H., & Pavlostathis, S. G. (2004). Decolorization and toxicity of reactive anthraquinone textile dyes under methanogenic conditions. Water Research, 38(7), 1838–1852.

    Article  CAS  Google Scholar 

  • Natarajan, T. S., Thomas, M., Natarajan, K., Bajaj, H. C., & Tayade, R. J. (2011). Study on UV-LED/TiO2 process for degradation of Rhodamine B dye. Chemical Engineering Journal, 169(1), 126–134.

    Article  CAS  Google Scholar 

  • Pi, Y., & Wang, J. (2007). Pathway of the ozonation of 2, 4, 6-trichlorophenol in aqueous solution. Frontiers of Environmental Science & Engineering in China, 1(2), 179–183.

    Article  Google Scholar 

  • Rajeswari, K., Subashkumar, R., & Vijayaraman, K. (2014). Degradation of textile dyes by isolated Lysinibacillus Sphaericus strain RSV-1 and Stenotrophomonas maltophilia strain RSV-2 and toxicity assessment of degraded product. Journal of Environmental & Analytical Toxicology, 4(4), 1.

    Google Scholar 

  • Rajoriya, S., Bargole, S., & Saharan, V. K. (2017). Degradation of a cationic dye (Rhodamine 6G) using hydrodynamic cavitation coupled with other oxidative agents: reaction mechanism and pathway. Ultrasonics Sonochemistry, 34, 183–194.

    Article  CAS  Google Scholar 

  • Rasheed, T., Bilal, M., Iqbal, H. M. N., Shah, S. Z. H., Hu, H., Zhang, X., & Zhou, Y. (2017). TiO2/UV-assisted Rhodamine B degradation: putative pathway and identification of intermediates by UPLC/MS. Environmental Technology. doi:10.1080/09593330.2017.1332109.

  • Shu, H. Y., & Hsieh, W. P. (2006). Treatment of dye manufacturing plant effluent using an annular UV/H 2 O 2 reactor with multi-UV lamps. Separation and Purification Technology, 51(3), 379–386.

    Article  CAS  Google Scholar 

  • Thaler, S., Haritoglou, C., Choragiewicz, T. J., Messias, A., Baryluk, A., May, C. A., et al. (2008). In vivo toxicity study of rhodamine 6G in the rat retina. Investigative Ophthalmology & Visual Science, 49(5), 2120–2126.

    Article  Google Scholar 

  • Yang, C. L., & McGarrahan, J. (2005). Electrochemical coagulation for textile effluent decolorization. Journal of Hazardous Materials, 127(1), 40–47.

    Article  CAS  Google Scholar 

  • Zhong, H. E., Shaogui, Y., Yongming, J. U., & Cheng, S. U. N. (2009). Microwave photocatalytic degradation of Rhodamine B using TiO2 supported on activated carbon: mechanism implication. Journal of Environmental Sciences, 21(2), 268–272.

    Article  Google Scholar 

Download references

Acknowledgements

The technical and analytical assistance provided by the Instrumental Analysis Center of Shanghai Jiao Tong University, Shanghai 200240, China is thankfully acknowledged. The authors are also grateful to the School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China for generously providing human cell lines and for technical assistance in carrying out the cytotoxicity analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Bilal or Hafiz M. N. Iqbal.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasheed, T., Bilal, M., Iqbal, H.M.N. et al. Reaction Mechanism and Degradation Pathway of Rhodamine 6G by Photocatalytic Treatment. Water Air Soil Pollut 228, 291 (2017). https://doi.org/10.1007/s11270-017-3458-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3458-6

Keywords

Navigation