Skip to main content
Log in

Adsorption Process of Vanadium (V) with Melamine

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Melamine, which has three free amino groups and three aromatic nitrogen atoms in its molecule, can be potentially used as an adsorbent for metal ions. Factors associated with adsorption efficiency of vanadium by melamine were systematically investigated, including initial pH value of solution, temperature, contact time, and dosage of melamine. The optimal operation conditions for adsorption performance of vanadium with melamine were obtained. The adsorption efficiency was over 99.97% at the initial pH value of 1.18, molar ratio of n (melamine)/n (vanadium) = 1.0 for 60 min. The kinetic data for the adsorption followed well the pseudo second-order kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbasi, S. M., & Shokuhfar, A. (2007). Improvement of mechanical properties of Cr-Ni-Mo-Cu-Ti stainless steel with addition of vanadium. Journal of Iron and Steel Research International, 14(6), 74–78.

    Article  CAS  Google Scholar 

  • Banwen, S., & Yuji, L. (1998). Inorganic chemistry series (vanadium, vol. 8). Beijing: Science press.

    Google Scholar 

  • Chen, X., Lan, X., Zhang, Q., Ma, H., & Zhou, J. (2010). Leaching vanadium by high concentration sulfuric acid from stone coal. Transactions of the Nonferrous Metals Society of China, 20, 123–126.

    Article  Google Scholar 

  • Chen, D., Zhao, H., Hu, G., Qi, T., Yu, H., Zhang, G., Wang, L., & Wang, W. (2015). An extraction process to recover vanadium from low-grade vanadium-bearing titanomagnetite. Journal of Hazardous Materials, 294, 35–40.

    Article  CAS  Google Scholar 

  • Fan, Y., Wang, X., & Wang, M. (2013). Separation and recovery of chromium and vanadium from vanadium-containing chromate solution by ion exchange. Hydrometallurgy, 136, 31–35.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465.

    Article  CAS  Google Scholar 

  • Huang, M., Li, Z., Xie, Y., & Li, X. (2006a). Adsorptive performance of melamine for silver ions. Industrial Water Treatment, 26(1), 36–39.

    CAS  Google Scholar 

  • Huang, M., Peng, Q., & Li, X. (2006b). Rapid and effective adsorption of lead ions on fine poly(phenylenediamine) microparticles. Chemistry-a European Journal, 12(14), 4341–4350.

    Article  CAS  Google Scholar 

  • Huang, M., Lu, H., & Li, X. (2012). Synthesis and strong heavy-metal ion sorption of copolymer microparticles from phenylenediamine and its sulfonate. Journal of Materials Chemistry, 22(34), 17685–17699.

    Article  CAS  Google Scholar 

  • Li, X., Huang, M., & Li, S. (2004). Facile synthesis of poly (1,8-diaminonaphthalene) microparticles with a very high silver-ion adsorbability by a chemical oxidative polymerization. Acta Materialia, 52(18), 5363–5374.

    Article  CAS  Google Scholar 

  • Li, X., Liu, R., & Huang, M. (2005). Facile synthesis and highly reactive silver ion adsorption of novel microparticles of sulfodiphenylamine and diaminonaphthalene copolymers. Chemistry of Materials, 17(22), 5411–5419.

    Article  CAS  Google Scholar 

  • Li, X., Ma, X., Sun, J., & Huang, M. (2009). Powerful reactive sorption of silver (I) and mercury (II) onto poly (o-phenylenediamine) microparticles. Langmuir, 25(3), 1675–1684.

    Article  CAS  Google Scholar 

  • Li, X., Feng, H., & Huang, M. (2010). Redox sorption and recovery of silver ions as silver Nanocrystals on poly(aniline-co-5-sulfo-2-anisidine) nanosorbents. Chemistry A European Journal, 16(33), 10113–10123.

    Article  CAS  Google Scholar 

  • Lin, L., Liu, K., Atsushi, S., Yen, W., Toyohisa, F., Osamu, S., & Akira, K. (2004). Recovery of tungsten and vanadium from tungsten alloy scrap. Hydrometallurgy, 72(1–2), 1–8.

    Google Scholar 

  • Liu, Z., Nueraihemaiti, A., Chen, M., Du, J., Fan, X., & Tao, C. (2015). Hydrometallurgical leaching process intensified by an electric field for converter vanadium slag. Hydrometallurgy, 155, 56–60.

    Article  CAS  Google Scholar 

  • Lv, Q., Huang, M., & Li, X. (2007). Synthesis and heavy-metal-ion sorption of pure sulfophenylenediamine copolymer nanoparticles with intrinsic conductivity and stability. Chemistry-a European Journal, 13(21), 6009–6018.

    Article  Google Scholar 

  • Mazurek, K. (2013). Recovery of vanadium, potassium and iron from a spent vanadium catalyst by oxalic acid solution leaching, precipitation and ion exchange processes. Hydrometallurgy, 134-135, 26–31.

    Article  CAS  Google Scholar 

  • Moskalyk, R. R., & Alfantazi, A. M. (2003). Processing of vanadium: a review. Minerals Engineering, 16(9), 793–805.

    Article  CAS  Google Scholar 

  • Navarro, R., Guzman, J., Saucedo, I., Revilla, J., & Guibal, E. (2007). Vanadium recovery from oil fly ash by leaching, precipitation and solvent extraction processes. Waste Management, 27(3), 425–438.

    Article  CAS  Google Scholar 

  • Nguyen, T. H., & Lee, M. S. (2013). Separation of molybdenum and vanadium from acid solutions by ion exchange. Hydrometallurgy, 136, 65–70.

    Article  CAS  Google Scholar 

  • Nicholas, J. N., Silva, G. d., Kentish, S., & Stevens, G. W. (2014). Use of vanadium (V) oxide as a catalyst for CO2 hydration in potassium carbonate systems. Industrial & Engineering Chemistry Research, 53(8), 3029–3039.

    Article  CAS  Google Scholar 

  • Peng, H., Liu, Z., & Tao, C. (2015). Selective leaching of vanadium from chromium residue intensified by electric field. Journal of Environmental Chemical Engineering, 3(2), 1252–1257.

    Article  CAS  Google Scholar 

  • Peng, H., Liu, Z., & Tao, C. (2016a). Leaching kinetics of vanadium with electro-oxidation and H2O2 in alkaline medium. Energy & Fuels, 30(9), 7802–7807.

    Article  CAS  Google Scholar 

  • Peng, H., Liu, Z., & Tao, C. (2016b). Leaching of vanadium and chromium from residue. Journal of Research and Development, 4(1).

  • Peng, H., Liu, Z., & Tao, C. (2017). Adsorption kinetics and isotherm of vanadium with melamine. Water Science and Technology, 75(10), 2316–2321.

    Article  Google Scholar 

  • Sahu, K. K., Agrawal, A., & Mishra, D. (2013). Hazardous waste to materials: recovery of molybdenum and vanadium from acidic leach liquor of spent hydroprocessing catalyst using alamine 308. Journal of Environmental Management, 125(0), 68–73.

    Article  CAS  Google Scholar 

  • Saleta, M. E., Curiale, J., Troiani, H. E., Ribeiro, G. S., Sánchez, R. D., Malta, M., & Torresi, R. M. (2007). Magnetic characterization of vanadium oxide/polyaniline nanotubes. Applied Surface Science, 254(1), 371–374.

    Article  CAS  Google Scholar 

  • Wang, W. (2007). Continuous determination of vanadium and chromium in steel and alloy. Advanced Measurement and Laboratory Management, 4, 9–10.

    Google Scholar 

  • Wei, Z., Liu, D., Hsu, C., & Liu, F. (2014). All-vanadium redox photoelectrochemical cell: an approach to store solar energy. Electrochemistry Communications, 45, 79–82.

    Article  CAS  Google Scholar 

  • Zeng, L., & Cheng, C. (2010). Recovery of molybdenum and vanadium from synthetic sulphuric acid leach solutions of spent hydrodesulphurisation catalysts using solvent extraction. Hydrometallurgy, 101(3–4), 141–147.

    Article  CAS  Google Scholar 

  • Zeng, L., Li, Q., Xiao, L., & Zhang, Q. (2010). A study of the vanadium species in an acid leach solution of stone coal using ion exchange resin. Hydrometallurgy, 105(1–2), 176–178.

    Article  CAS  Google Scholar 

  • Zhang, Y., Fan, B., & Peng, D. (2001). Research of precipitation poly ammonium vandate from extraction solution of acid leaching bone coal. Chinese Journal of Rare Metals, 02, 157–160.

    Google Scholar 

  • Zhang, B., Hao, L., Tian, C., Yuan, S., Feng, C., Ni, J., & Borthwick, A. G. L. (2015). Microbial reduction and precipitation of vanadium (V) in groundwater by immobilized mixed anaerobic culture. Bioresource Technology, 192, 410–417.

    Article  CAS  Google Scholar 

  • Zhao, Z., Long, H., Li, X., Fan, Y., & Han, Z. (2012). Precipitation of vanadium from Bayer liquor with lime. Hydrometallurgy, 115-116, 52–56.

    Article  CAS  Google Scholar 

  • Zhao, Z., Guo, M., & Zhang, M. (2015). Extraction of molybdenum and vanadium from the spent diesel exhaust catalyst by ammonia leaching method. J Hazard Mater, 286.

Download references

Acknowledgements

This work was supported by Chongqing University Postgraduates’ Innovation Project (CYB15045) and the Natural Science Foundation of China (No. 51274261).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Peng or Changyuan Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H., Liu, Z. & Tao, C. Adsorption Process of Vanadium (V) with Melamine. Water Air Soil Pollut 228, 272 (2017). https://doi.org/10.1007/s11270-017-3452-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3452-z

Keywords

Navigation