Skip to main content
Log in

Interaction Study Between Humin and Phosphate: Possible Environmental Remediation for Domestic Wastewater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The increase in demand for food due to the rapid population growth in recent years has raised the use of fertilizers, particularly phosphate salts. This fact has contributed to the excess amount of phosphorus species in aquatic systems. This is due to the leaching of these species present in the fertilizers applied to the soil to aquatic environments and may lead to eutrophication in these environments. Substances capable of interacting with the phosphate in the aquatic environment are promising for the reduction on the environmental impact. The humin, an insoluble fraction of humic material, has potential for phosphate retention, behaving like a chelating resin. Thus, the purpose of this research was to study the interaction between humin and phosphate. The equilibrium time between humin and phosphate was 15 min, where hydrogenionic potential (pH) 4.0 was the most effective in the interaction process. In this pH, the humin retained 33% of phosphate added. The complexing capacity of the humin-phosphate system was 11.53 mg g−1. The adsorption studies indicated that the system follows a kinetic pseudo-second-order model. The Freundlich model was the most suitable to describe the phosphate adsorption process in humin. To evaluate the humin application in real systems, humin was added to the domestic wastewater. Sixteen percent of the total phosphate was adsorbed by the humin. Based on these results, humin has the potential to phosphate retention in domestic wastewater and could be used as a chelating resin minimizing environmental impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Azizian, S. (2004). Kinetic models of sorption: a theoretical analysis. Journal of Colloid and Interface Science, 276(1), 45–52.

    Article  Google Scholar 

  • Bagda, E., Ersan, M., & Bagda, E. (2013). Investigation of adsorptive removal of tetracycline with sponge like, Rosa canina gall extract modified, polyacrylamide cryogels. Journal of Environmental Chemical Engineering, 1(4), 1079–1084.

    Article  CAS  Google Scholar 

  • Batista, A. P. S., Romão, L. P. C., & Arguelho, M. L. P. M. (2009). Biosorption of Cr(III) using in natura and chemically treated tropical peats. Journal of Hazardous Materials, 163(2), 517–523.

    Article  CAS  Google Scholar 

  • Borggaard, O. K., Raben-Lange, B., Gimsing, A. L., & Strobel, B. W. (2005). Influence of humic substances on phosphate adsorption by aluminium and iron oxides. Geoderma, 127(3–4), 270–279.

    Article  CAS  Google Scholar 

  • Botero, W. G., Oliveira, L. C., Rocha, J. C., Rosa, A. H., & Santos, A. (2010). Peat humic substances enriched with nutrients for agricultural applications: competition between nutrients and non-essential metals present in tropical soils. Journal of Hazardous Materials, 177(1–3), 307–311.

    Article  CAS  Google Scholar 

  • Botero, W. G., Oliveira, L. C., Cavagis, A. D. M., Rosa, A. H., Rocha, J. C., & Santos, A. (2013). Influence of the extractant on the complexing capacity of humic substances from peat for macro and micronutrients using continuous flow: agricultural application and environmental impacts. Journal of the Brazilian Chemical Society, 24(12), 2015–2020.

    CAS  Google Scholar 

  • Brasil (2011). Resolution CONAMA 430/2011. http://www.mma.gov.br/port/conama. Accessed 10.11.16.

  • Buffle, J., & Staub, C. (1984). Measurement of complexation properties of metal-ions in natural conditions by ultrafiltration—measurement of equilibrium-constants for complexation of zinc by synthetic and natural ligands. Analytical Chemistry, 56(14), 2837–2842.

    Article  CAS  Google Scholar 

  • Burba, P., Van Den Bergh, J., & Klockow, D. (2001). On-site characterization of humic-rich hydrocolloids and their metal loads by means of mobile size-fractionation and exchange techniques. Fresenius Journal of Analytical Chemistry, 371(5), 660–669.

    Article  CAS  Google Scholar 

  • Cerqueira, S. C. A., Romao, L. P. C., Lucas, S. C. O., Fraga, L. E., Simoes, M. L., Hammer, P., Lead, J. R., Mangoni, A. P., & Mangrich, A. S. (2012). Spectroscopic characterization of the reduction and removal of chromium (VI) by tropical peat and humin. Fuel, 91(1), 141–146.

    Article  CAS  Google Scholar 

  • Contreras, C., De La Rosa, G., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2006). Lead adsorption by silica-immobilized humin under flow and batch conditions: assessment of flow rate and calcium and magnesium interference. Journal of Hazardous Materials, 133(1–3), 79–84.

    Article  CAS  Google Scholar 

  • Cunha, G. C., Goveia, D., Romao, L. P. C., & Oliveira, L. C. (2015). Effect of the competition of Cu(II) and Ni(II) on the kinetic and thermodynamic stabilities of Cr(III)-organic ligand complexes using competitive ligand exchange (EDTA). Journal of Environmental Management, 154, 259–265.

    Article  CAS  Google Scholar 

  • De La Rosa, G., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2003). Utilization of ICP/determination of volatile organic compounds in drinking water. Chemosphere, 45(3), 275–284.

    Google Scholar 

  • Freundlich, H. M. F. (1906). Over the adsorption in solution. Journal of Physical Chemistry, 57, 385–470.

    CAS  Google Scholar 

  • Goveia, D., Melo, C. D. A., Oliveira, L. K. D., Fraceto, L. F., Rocha, J. C., Dias Filho, N. L., & Rosa, A. H. (2013). Adsorption and release of micronutrients by humin extracted from peat samples. Journal of the Brazilian Chemical Society, 24(5), 721–730.

    CAS  Google Scholar 

  • Guedes, R. S., Melo, L. C. A., Vergutz, L., Rodriguez-Vila, A., Covelo, E. F., & Fernandes, A. R. (2016). Adsorption and desorption kinetics and phosphorus hysteresis in highly weathered soil by stirred flow chamber experiments. Soil and Tillage Research, 162, 46–54.

    Article  Google Scholar 

  • Gustafsson, J.P. (2016). Visual MINTEQ, ver. 3.1. Stockholm: Royal Institute of Technology, Div. of Land and Water Resources Engineering. Available at: https://vminteq.lwr.kth.se/visual-minteq-ver-3-1/.

  • Ho, Y. S., & McKay, G. (1999). The sorption of lead(II) ions on peat. Water Research, 33(2), 578–584.

    Article  CAS  Google Scholar 

  • Ho, Y. S., Ng, J. C. Y., & McKay, G. (2000). Kinetics of pollutant sorption by biosorbents: review. Separation and Purification Methods, 29(2), 189–232.

    Article  CAS  Google Scholar 

  • Jacundino, J. S., Santos, O. S., Santos, J. C. C., Botero, W. G., Goveia, D., Carmo, J. B., & Oliveira, L. C. (2015). Interactions between humin and potentially toxic metals: Prospects for its utilization as an environmental repair agent. Journal of Environmental Chemical Engineering, 3(2), 708–715.

    Article  Google Scholar 

  • Lai, L., Xie, Q., Chi, L., Gu, W., & Wu, D. (2016). Adsorption of phosphate from water by easily separable Fe3O4@SiO2 core/shell magnetic nanoparticles functionalized with hydrous lanthanum oxide. Journal of Colloid and Interface Science, 465, 76–82.

    Article  CAS  Google Scholar 

  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38, 2221–2295.

    Article  CAS  Google Scholar 

  • Manahan, S., & Manahan, S. E. (2009). Environmental chemistry. New York: Press Taylor & Francis.

    Google Scholar 

  • Mezenner, N. Y., & Bensmaili, A. (2009). Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste. Chemical Engineering Journal, 147(2–3), 87–96.

    Article  CAS  Google Scholar 

  • Millier, H. K. G. R., & Hooda, P. S. (2011). Phosphorus species and fractionation e why sewage derived phosphorus is a problem. Journal of Environmental Management, 92(4), 1210–1214.

    Article  CAS  Google Scholar 

  • Ninfant’eva, T. I., Shkinev, V. M., Spivakov, B. Y., & Burba, P. (1999). Membrane filtration studies of aquatic humic substances and their metal species: a concise overview. Part 2. Evaluation of conditional stability constants by using ultrafiltration. Talanta, 48(2), 257–267.

    Article  Google Scholar 

  • Nkhili, E., Guyot, G., Vassal, N., & Richard, C. (2012). Extractability of water-soluble soil organic matter as monitored by spectroscopic and chromatographic analyses. Environmental Science and Pollution Research, 19(6), 2400–2407.

    Article  CAS  Google Scholar 

  • Paula Filho, F. J., Marins, R. V. (2004). Distribuição e partição geoquímica de fósforo em sedimentos estaurinos do rio Jaguaribe/CE – Fortaleza-CE. http://www.repositorio.ufc.br/handle/riufc/1311. Accessed 20 June 2016.

  • Raij, B. V., Quaggio, J. A., Cantarella, H., Ferreira, M. E., Lopes, A. S., Bataglia, O. C. (1987). Análise química do solo para fins de fertilidade. Campinas: Fundação Cargill.

  • Rice, J. (2001). Humin. Soil Science, 166(11), 848–857.

    Article  CAS  Google Scholar 

  • Rocha, J. C., Rosa, A. H., & Cardoso, A. A. (2009). Introduction to environmental chemistry. Porto Alegre: Bookman.

    Google Scholar 

  • Rodrigues, L. A., & Silva, M. L. C. P. (2009). Adsorption of phosphate ions on hydrous niobium oxide. Quimica Nova, 32(5), 1206–1211.

    Article  CAS  Google Scholar 

  • Romao, L. P. C., Castro, G. R., Rosa, A. H., Rocha, J. C., Padilha, P. M., & Silva, H. C. (2003). Tangencial flow ultrafiltration: a versatile metodology for determination of complexation parameters in refractory organic matter from brazilian water and soil samples. Analytical and Bioanalytical Chemistry, 375(8), 1097–1100.

    Article  CAS  Google Scholar 

  • Rosa, A. H., Rocha, J. C., & Furlan, M. (2000). Humic substances of peat: study of the parameters that influence on the process of alkaline e extraction. Quimica Nova, 23(4), 472–476.

    Article  CAS  Google Scholar 

  • Rosa, A. H., Goveia, D., Bellin, I. C., Lessa, S. S., Dias Filho, N. L., & Padilha, P. M. (2006). New analytical procedure based on cellulose bag and ion exchanger with p-aminobenzoic groups for differentiation of labile and inert metals species in aquatic systems. Analytical and Bioanalytical Chemistry, 386(7–8), 2153–2160.

    Article  CAS  Google Scholar 

  • Sakadevan, K., & Bavor, H. J. (1998). Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems. Water Research, 32(2), 393–399.

    Article  CAS  Google Scholar 

  • Sargentini Jr., E., Rocha, J. C., Rosa, A. H., Zara, L. F., & Santos, A. (2001). Aquatic humic substances: molecular size fractionation and characterization of inner rearrangements after metal ions complexation. Química Nova, 24(3), 399–344.

    Article  Google Scholar 

  • Souza, S. O., Oliveira, L. C., Cavagis, A. D. M., & Botero, W. G. (2014). Cyanogenic residues: environmental impacts, complexation with humic substances, and possible application as biofertilizer. Water, Air and Soil Pollution, 225, 2223–2233.

    Article  Google Scholar 

  • Souza, S. O., Silva, M. M., Santos, J. C. C., Oliveira, L. C., Carmo, J. B., & Botero, W. G. (2016). Evaluation of different fractions of the organic matter of peat on tetracycline retention in the environmental conditions: in vitro studies. Journal of Soils and Sediments, 16(6), 1764–1775.

    Article  CAS  Google Scholar 

  • Standard Methods for the Examination of Water & Wastewater (2005). New York: American Public Health Association.

  • Voudrias, E., Fytianos, K., & Bozani, E. (2002). Sorption desorption isotherms of dyes from aqueous solutions and wastewaters with different sorbent materials. Global NEST Journal, 4(1), 75–83.

    Google Scholar 

  • Wan Ngah, W. S., Endud, C. S., & Mayanar, R. (2002). Removal of copper (II) ions from solution onto chitosan and cross-linked chitosan beads. Reactive and Functional Polymers, 50(2), 181–190.

    Article  Google Scholar 

  • Winarso, S., Sulistyanto, D., & Handayanto, E. (2011). Effects of humic compounds and phosphate solubilizing bacteria on phosphorus availability in an acid soil. Journal of Ecology and the Natural Environment, 3(7), 232–240.

    CAS  Google Scholar 

  • Yan, L., Xu, Y., Yu, H., Xin, X., Wei, Q., & Du, B. (2010). Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron–aluminum pillared bentonites. Journal of Hazardous Materials, 179(1–3), 244–250.

    Article  CAS  Google Scholar 

  • Zamparas, M., Drosos, M., Georgiou, Y., Deligiannakis, Y., & Zacharias, I. (2013). A novel bentonite-humic acid composite material Bephos™ for removal of phosphate and ammonium from eutrophic waters. Chemical Engineering Journal, 225(1), 43–51.

    Article  CAS  Google Scholar 

  • Zhang, J., He, M., & Shi, Y. (2009). Comparative sorption of benzo[α]phrene to different humic acids and humin in sediments. Journal of Hazardous Materials, 166(2–3), 802–809.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Council for Scientific and Technological Development (CNPq Process 478361/2013-0) for the financial support provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Camargo de Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, D.A.V., Botero, W.G., Santos, J.C.C. et al. Interaction Study Between Humin and Phosphate: Possible Environmental Remediation for Domestic Wastewater. Water Air Soil Pollut 228, 265 (2017). https://doi.org/10.1007/s11270-017-3447-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3447-9

Keywords

Navigation