Skip to main content

Advertisement

Log in

Potential of Pyrene Removal from Urban Environments by the Activities of Bacteria and Biosurfactant on Ornamental Plant Leaves

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Pyrene is a dominant PAH in urban environments. It can combine with airborne particulates and accumulate on plant leaves. To investigate pyrene’s biodegradation potential, this study initially monitored the abundance of airborne and phyllosphere bacteria. The number of airborne pyrene-degrading bacteria ranged from 22 to 152 CFU m−3 air, and more bacteria were found in the proximity of the ornamental plant swath than along the roadside. Pyrene-degrading bacteria averaged 5 × 104 CFU g−1 on the leaves of all tested plant species and accounted for approximately 7% of the total population. Four pyrene-degrading bacteria were isolated from I. coccinea to use as model phyllosphere bacteria. To increase the bioavailability of pyrene, a lipopeptide biosurfactant was applied. Kocuria sp. IC3 showed the highest pyrene degradation in the medium containing biosurfactant. The removal of deposited pyrene at 30 μg g−1 leaf was monitored in a glass chamber containing I. coccinea twigs. After 14 days, leaves containing both Kocuria sp. IC3 and 0.1× CMC biosurfactant showed 100% pyrene removal with the most abundant bacteria. The system with biosurfactant alone also enhanced the activities of phyllosphere bacteria with 94% pyrene removal. Consequently, the bioremediation of deposited pyrene could be achieved by spraying biosurfactant on ornamental shrubs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Awadhi, H., Al-Mailem, D., Dashti, N., Hakam, L., Eliyas, M., & Radwan, S. (2012). The abundant occurrence of hydrocarbon-utilizing bacteria in the phyllospheres of cultivated and wild plants in Kuwait. International Biodeterioration & Biodegradation, 73, 73–79.

    Article  CAS  Google Scholar 

  • Ali, N., Sorkhoh, N., Salamah, S., Eliyas, M., & Radwan, S. (2012). The potential of epiphytic hydrocarbon-utilizing bacteria on legume leaves for attenuation of atmospheric hydrocarbon pollutants. Journal of Environmental Management, 93, 113–120.

    Article  CAS  Google Scholar 

  • Andrews, J. M. (2001). Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy, 48(suppl 1), 5–16.

    Article  CAS  Google Scholar 

  • Aryal, M., & Liakopoulou-Kyriakides, M. (2013). Biodegradation and kinetics of phenanthrene and pyrene in the presence of nonionic surfactants by Arthrobacter strain Sphe3. Water, Air, & Soil Pollution, 224, 1426.

    Article  Google Scholar 

  • Bertolini, V., Gandolfi, I., Ambrosini, R., Bestetti, G., Innocente, E., Rampazzo, G., & Franzetti, A. (2013). Temporal variability and effect of environmental variables on airborne bacterial communities in an urban area of northern Italy. Applied Microbiology and Biotechnology, 97, 6561–6570.

    Article  CAS  Google Scholar 

  • Bian, Q., Alharbi, B., Collett, J., Kreidenweis, S., & Pasha, M. J. (2016). Measurements and source apportionment of particle-associated polycyclic aromatic hydrocarbons in ambient air in Riyadh, Saudi Arabia. Atmospheric Environment, 137, 186–198.

    Article  CAS  Google Scholar 

  • Boonyatumanond, R., Murakami, M., Wattayakorn, G., Togo, A., & Takada, H. (2007). Sources of polycyclic aromatic hydrocarbons (PAHs) in street dust in a tropical Asian mega-city, Bangkok, Thailand. Science of the Total Environment, 384, 420–432.

    Article  CAS  Google Scholar 

  • Bordoloi, N. K., & Konwar, B. K. (2009). Bacterial biosurfactant in enhancing solubility and metabolism of petroleum hydrocarbons. Journal of Hazardous Materials, 170, 495–505.

    Article  CAS  Google Scholar 

  • Bringel, F., & Couée, I. (2015). Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Frontiers in Microbiology, 6, 486.

    Article  Google Scholar 

  • Chen, K., Zhu, Q., Qian, Y., Song, Y., Yao, J., & Choi, M. M. (2013). Microcalorimetric investigation of the effect of non-ionic surfactant on biodegradation of pyrene by PAH-degrading bacteria Burkholderia cepacia. Ecotoxicology and Environmental Safety, 98, 361–367.

    Article  CAS  Google Scholar 

  • Das, P., Mukherjee, S., & Sen, R. (2008). Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin. Chemosphere, 72, 1229–1234.

    Article  CAS  Google Scholar 

  • De Kempeneer, L., Sercu, B., Vanbrabant, W., Van Langenhove, H., & Verstraete, W. (2004). Bioaugmentation of the phyllosphere for the removal of toluene from indoor air. Applied Microbiology and Biotechnology, 64, 284–288.

    Article  Google Scholar 

  • Fellet, G., Pošćić, F., Licen, S., Marchiol, L., Musetti, R., Tolloi, A., & Zerbi, G. (2016). PAHs accumulation on leaves of six evergreen urban shrubs: A field experiment. Atmospheric Pollution Research, 7, 915–924.

    Article  Google Scholar 

  • Ghosh, I., & Mukherji, S. (2016). Diverse effect of surfactants on pyrene biodegradation by a Pseudomonas strain utilizing pyrene by cell surface hydrophobicity induction. International Biodeterioration & Biodegradation, 108, 67–75.

    Article  CAS  Google Scholar 

  • Gottfried, A., Singhal, N., Elliot, R., & Swift, S. (2010). The role of salicylate and biosurfactant in inducing phenanthrene degradation in batch soil slurries. Applied Microbiology and Biotechnology, 86, 1563–1571.

    Article  CAS  Google Scholar 

  • Hussar, E., Richards, S., Lin, Z. Q., Dixon, R. P., & Johnson, K. A. (2012). Human health risk assessment of 16 priority polycyclic aromatic hydrocarbons in soils of Chattanooga, Tennessee, USA. Water, Air, & Soil Pollution, 223, 5535–5548.

    Article  CAS  Google Scholar 

  • Khondee, N., Tathong, S., Pinyakong, O., Müller, R., Soonglerdsongpha, S., Ruangchainikom, C., & Luepromchai, E. (2015). Lipopeptide biosurfactant production by chitosan-immobilized Bacillus sp. GY19 and their recovery by foam fractionation. Biochemical Engineering Journal, 93, 47–54.

    Article  CAS  Google Scholar 

  • Klankeo, P., Nopcharoenkul, W., & Pinyakong, O. (2009). Two novel pyrene-degrading Diaphorobacter sp. and Pseudoxanthomonas sp. isolated from soil. Journal of Bioscience and Bioengineering, 108, 488–495.

    Article  CAS  Google Scholar 

  • Liang, J., Fang, H., Wu, L., Zhang, T., & Wang, X. (2016). Characterization, distribution, and source analysis of metals and polycyclic aromatic hydrocarbons (PAHs) of atmospheric bulk deposition in Shanghai, China. Water, Air, & Soil Pollution, 227, 1–14.

    Article  CAS  Google Scholar 

  • Liu, F., Wang, C., Liu, X., Liang, X., & Wang, Q. (2013). Effects of alkyl polyglucoside (APG) on phytoremediation of PAH-contaminated soil by an aquatic plant in the Yangtze estuarine wetland. Water, Air, & Soil Pollution, 224, 1633.

    Article  Google Scholar 

  • Lymperopoulou, D. S., Adams, R. I., & Lindow, S. E. (2016). Contribution of vegetation to the microbial composition of nearby outdoor air. Applied and Environmental Microbiology, 82, 3822–3833.

    Article  CAS  Google Scholar 

  • Mnif, I., & Ghribi, D. (2015). Microbial derived surface active compounds: Properties and screening concept. World Journal of Microbiology and Biotechnology, 31, 1001–1020.

  • Ohura, T., Kamiya, Y., & Ikemori, F. (2016). Local and seasonal variations in concentrations of chlorinated polycyclic aromatic hydrocarbons associated with particles in a Japanese megacity. Journal of Hazardous Materials, 312, 254–261.

    Article  CAS  Google Scholar 

  • Peng, C., Ouyang, Z., Wang, M., Chen, W., & Jiao, W. (2012). Vegetative cover and PAHs accumulation in soils of urban green space. Environmental Pollution, 161, 36–42.

    Article  CAS  Google Scholar 

  • Rodrigues, A., Nogueira, R., Melo, L. F., & Brito, A. G. (2013). Effect of low concentrations of synthetic surfactants on polycyclic aromatic hydrocarbons (PAH) biodegradation. International Biodeterioration & Biodegradation, 83, 48–55.

    Article  CAS  Google Scholar 

  • Rodríguez-Escales, P., Borràs, E., Sarra, M., & Folch, A. (2013). Granulometry and surfactants, key factors in desorption and biodegradation (T. versicolor) of PAHs in soil and groundwater. Water, Air, & Soil Pollution, 224, 1422.

    Article  Google Scholar 

  • Rosenberg, M., Gutnick, D., & Rosenberg, E. (1980). Adherence of bacteria to hydrocarbons: A simple method for measuring cell-surface hydrophobicity. FEMS Microbiology Letters, 9, 29–33.

    Article  CAS  Google Scholar 

  • Ruchirawat, M., Settachan, D., Navasumrit, P., Tuntawiroon, J., & Autrup, H. (2007). Assessment of potential cancer risk in children exposed to urban air pollution in Bangkok, Thailand. Toxicology Letters, 168, 200–209.

    Article  CAS  Google Scholar 

  • Sandhu, A., Halverson, L. J., & Beattie, G. A. (2007). Bacterial degradation of airborne phenol in the phyllosphere. Environmental Microbiology, 9, 383–392.

    Article  CAS  Google Scholar 

  • Smets, W., Moretti, S., Denys, S., & Lebeer, S. (2016). Airborne bacteria in the atmosphere: Presence, purpose, and potential. Atmospheric Environment, 139, 214–221.

    Article  CAS  Google Scholar 

  • Song, Y. F., Jing, X., Fleischmann, S., & Wilke, B. M. (2002). Comparative study of extraction methods for the determination of PAHs from contaminated soils and sediments. Chemosphere, 48, 993–1001.

    Article  CAS  Google Scholar 

  • Sorkhoh, N. A., Al-Mailem, D. M., Ali, N., Al-Awadhi, H., Salamah, S., Eliyas, M., & Radwan, S. S. (2011). Bioremediation of volatile oil hydrocarbons by epiphytic bacteria associated with American grass (Cynodon sp.) and broad bean (Vicia faba) leaves. International Biodeterioration & Biodegradation, 65, 797–802.

    Article  CAS  Google Scholar 

  • Stepanović, S., Vuković, D., Hola, V., Bonaventura, G. D., Djukić, S., Ćirković, I., & Ruzicka, F. (2007). Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS, 115, 891–899.

    Article  Google Scholar 

  • Sun, G. D., Jin, J. H., Xu, Y., Zhong, Z. P., Liu, Y., & Liu, Z. P. (2014). Isolation of a high molecular weight polycyclic aromatic hydrocarbon-degrading strain and its enhancing the removal of HMW-PAHs from heavily contaminated soil. International Biodeterioration & Biodegradation, 90, 23–28.

    Article  CAS  Google Scholar 

  • Terzaghi, E., Wild, E., Zacchello, G., Cerabolini, B. E., Jones, K. C., & Di Guardo, A. (2013). Forest filter effect: Role of leaves in capturing/releasing air particulate matter and its associated PAHs. Atmospheric Environment, 74, 378–384.

    Article  CAS  Google Scholar 

  • Vokou, D., Vareli, K., Zarali, E., Karamanoli, K., Constantinidou, H. I. A., Monokrousos, N., & Sainis, I. (2012). Exploring biodiversity in the bacterial community of the Mediterranean phyllosphere and its relationship with airborne bacteria. Microbial Ecology, 64, 714–724.

    Article  Google Scholar 

  • Vorholt, J. A. (2012). Microbial life in the phyllosphere. Nature Reviews Microbiology, 10, 828–840.

    Article  CAS  Google Scholar 

  • Waight, K., Pinyakong, O., & Luepromchai, E. (2007). Degradation of phenanthrene on plant leaves by phyllosphere bacteria. The Journal of General and Applied Microbiology, 53, 265–272.

    Article  CAS  Google Scholar 

  • Wang, W., Ma, Y., Ma, X., Wu, F., Ma, X., An, L., & Feng, H. (2010). Seasonal variations of airborne bacteria in the Mogao grottoes, Dunhuang, China. International Biodeterioration & Biodegradation, 64, 309–315.

    Article  CAS  Google Scholar 

  • Wang, Q., Kobayashi, K., Wang, W., Ruan, J., Nakajima, D., Yagishita, M., & Sekiguchi, K. (2016). Size distribution and sources of 37 toxic species of particulate polycyclic aromatic hydrocarbons during summer and winter in Baoshan suburban area of Shanghai, China. Science of the Total Environment, 566, 1519–1534.

    Article  Google Scholar 

  • Wei, J., Huang, G., Yu, H., & An, C. (2011). Efficiency of single and mixed Gemini/conventional micelles on solubilization of phenanthrene. Chemical Engineering Journal, 168, 201–207.

    Article  CAS  Google Scholar 

  • Wiriya, W., Prapamontol, T., & Chantara, S. (2013). PM10-bound polycyclic aromatic hydrocarbons in Chiang Mai (Thailand): Seasonal variations, source identification, health risk assessment and their relationship to air-mass movement. Atmospheric Research, 124, 109–122.

    Article  CAS  Google Scholar 

  • Yadav, R. K. P., Halley, J. M., Karamanoli, K., Constantinidou, H. I., & Vokou, D. (2004). Bacterial populations on the leaves of Mediterranean plants: Quantitative features and testing of distribution models. Environmental and Experimental Botany, 52, 63–77.

    Article  Google Scholar 

  • Yilmaz, G., & Dane, F. (2012). Phytotoxicity induced by herbicide and surfactant on stomata and epicuticular wax of wheat. Romanian Biotechnological Letters, 17, 7757–7765.

    CAS  Google Scholar 

  • Yutthammo, C., Thongthammachat, N., Pinphanichakarn, P., & Luepromchai, E. (2010). Diversity and activity of PAH-degrading bacteria in the phyllosphere of ornamental plants. Microbial Ecology, 59, 357–368.

    Article  CAS  Google Scholar 

  • Zafra, G., Absalón, Á. E., Cuevas, M. D. C., & Cortés-Espinosa, D. V. (2014). Isolation and selection of a highly tolerant microbial consortium with potential for PAH biodegradation from heavy crude oil-contaminated soils. Water, Air, & Soil Pollution, 225, 1826.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Office of the Higher Education Commission, the Center of Excellence on Hazardous Substance Management (HSM), the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), the Asahi Glass Foundation and Mae Fah Luang University for their financial supports of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekawan Luepromchai.

Electronic supplementary material

Table S1

(DOCX 12 kb)

Table S2

(DOCX 11 kb)

Fig. S1

(DOCX 202 kb)

Fig. S2

(DOCX 4723 kb)

Fig. S3

(DOCX 949 kb)

Fig. S4

(DOCX 304 kb)

Fig. S5

(DOCX 307 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siriratruengsuk, W., Furuuchi, M., Prueksasit, T. et al. Potential of Pyrene Removal from Urban Environments by the Activities of Bacteria and Biosurfactant on Ornamental Plant Leaves. Water Air Soil Pollut 228, 264 (2017). https://doi.org/10.1007/s11270-017-3435-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3435-0

Keywords

Navigation