Advertisement

Hydraulic Retention Time Influence on Improving Flocculation in the Activated Sludge Processes Through Polyelectrolytes

  • Cristina E. Almeida-Naranjo
  • Patricio J. Espinoza-Montero
  • Marcelo I. Muñoz-Rodríguez
  • Cristina A. Villamar-Ayala
Article
  • 163 Downloads

Abstract

Hydraulic retention time (HRT) influence improving sludge flocculation with adding the polyelectrolytes (non-ionic, anionic, and cationic) was studied on an activated sludge (AS) system fed with synthetic domestic wastewater (SDW), dairy industry wastewater (DIW), and caramel industry wastewater (CIW). The sludge volumetric index, food/microorganism ratio (F/M), and mixed liquor volatile suspended solids at different HRTs (6, 8 and 10 h) were monitored on an experimental model. Results showed that both SDW and IW had the best sludge flocculation conditions at 8 h and 100 mL of non-ionic polyelectrolyte (0.2 mg L−1). In addition, this phenomenon reached the organic matter removal efficiencies of 95.9, 95.7, and 94.2% for SDW, DIW, and CIW, respectively. Therefore, optimum HRT increased the organic matter removal efficiencies by 10%, sludge concentration by 37% (22–55%), and F/M ratio by 70%. Moreover, the polyelectrolytes used in AS improved the sludge flocculation by 2.9 times.

Keywords

Activated sludge system Sludge flocculation Polyelectrolytes Synthetic domestic wastewater Industrial wastewater Sludge characteristics 

Notes

Acknowledgements

This work was supported by collaboration in the experimental research. The authors thank Mr. Jorge Escobar Ortiz for designing the reactors used in this study and to Ms. Jennifer Guerrero for the collaboration in the laboratory work.

References

  1. Amanatidou, E., Samiotis, G., Trikilidou, E., Pekridis, G., & Taousabidis, N. (2015). Evaluating sedimentation problems in activated sludge treatment plants operating at complete sludge retention time. Water Research, 69, 20–29.CrossRefGoogle Scholar
  2. APHA-AWWA-WPCF. (2005). Standard Methods for the Examination of Water and Wastewater, ed21st edition. Washington DC: American Public Health Association, American Water Works Association, Water Pollution Control Federation.Google Scholar
  3. Amuda, O. S., & Amoo, I. A. (2007). Coagulation/flocculation process and sludge conditioning in beverage industrial wastewater treatment. Journal of Hazardous Materials, 141, 778–783.CrossRefGoogle Scholar
  4. Arango, L., & López, J. D. (2011) Estudio a escala de laboratorio de los efectos de la forma de alimentación y de la cantidad de inóculo sobre el hinchamiento de los lodos de reactores aerobios mezcla completa en etapa de arranque (Laboratory-scale study of the feeding strategy influence on bulking in the startup scenario of aerobic reactors mixed sludge complete). Undergraduate thesis. Universidad de Medellín, Medellín, Colombia. 119 pp.Google Scholar
  5. Bolto, B., & Gregory, J. (2007). Organic polyelectrolytes in water treatment. Water Research, 41, 2301–2324.CrossRefGoogle Scholar
  6. Chu, C. P., Lee, D. J., Chang, B.-V., You, C. H., Liao, C. S., & Tay, J. H. (2003). Anaerobic digestion of polyelectrolyte flocculated waste activated sludge. Chemosphere, 53, 757–764.CrossRefGoogle Scholar
  7. De Gregorio, C., Caravelli, A. H., & Zaritzky, N. E. (2010). Performance and biological indicators of a laboratory-scale activated sludge reactor with phosphate simultaneous precipitation as affected by ferric chloride addition. Chemical Engineering Journal, 165, 607–616.CrossRefGoogle Scholar
  8. Gray, N. F. (2010). Water technology: an introduction for environmental scientists and engineers. Chapter 17: activated sludge 3rd Edn. 513–563, Oxford, Taylor & Francis.Google Scholar
  9. Hreiz, R., Latifi, M. A., & Roche, N. (2015). Optimal design and operation of activated sludge processes: state-of-the-art. Chemical Engineering Journal, 281, 900–920.CrossRefGoogle Scholar
  10. Lee, C., & Liu, J. (2000). Enhanced sludge dewatering by dual polyelectrolytes conditioning. Water Research, 34, 4430–4436.CrossRefGoogle Scholar
  11. Li, X.Y., Yang, S.F. (2007). Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Research, 41(5), 1022-1030.Google Scholar
  12. Liao, B.-Q., Allen, D. G., Leppard, G. G., Droppo, L. G., & Liss, S. N. (2000). Interparticle interactions affecting the stability of sludge flocs. Journal of Colloid and Interface Science, 249, 372–380.CrossRefGoogle Scholar
  13. Liu, Y., & Fang, H. H. (2003). Influences of extracellular polymeric substances (EPS) on flocculation, settling, and dewatering of activated sludge. Critical Reviews in Environmental Science and Technology, 33(3), 237–273.CrossRefGoogle Scholar
  14. Liu, Y., & Joo-Hwa, T. (2001). Strategy for minimization of excess sludge production from the activated sludge process. Biotechnology Advances, 19, 97–107.CrossRefGoogle Scholar
  15. Massé, A., Spérandio, M., & Cabassud, C. (2006). Comparison of sludge characteristics and performance of a submerged membrane bioreactor and an activated sludge process at high solids retention time. Water Research, 40, 2405–2415.CrossRefGoogle Scholar
  16. Mateo-Sagasta, J., Raschid-Sally, L., & Thebo, A. (2015). Global wastewater, sludge production, treatment and reuse. Chapter: wastewater. Wastewater: economic asset in an unbanning world. 15–38, Dordrecht: Springer.Google Scholar
  17. Mesquita, D. P., Amaral, A. L., & Ferreira, E. C. (2013). Activated sludge characterization through microscopy: a review on quantitative image analysis and chemometric techniques. Analytica Chimica Acta, 802, 14–28.CrossRefGoogle Scholar
  18. Nguyen, T. P., Hilal, N., Hankins, N. P., & Novak, J. T. (2008). Determination of the effect of cations and cationic polyelectrolytes on the characteristics and final properties of synthetic and activated sludge. Desalination, 222, 307–317.CrossRefGoogle Scholar
  19. Nguyen, T. P., Hankins, N. P., & Hilal, N. (2007). A comparative study of the flocculation behaviour and final properties of synthetic and activated sludge in wastewater treatment. Desalination, 204, 277–295.CrossRefGoogle Scholar
  20. Piirtola, L., Uusitalo, R., & Vesilind, A. (2000). Effect of mineral materials and cations on activated and alum sludge settling. Water Research, 34, 191–195.CrossRefGoogle Scholar
  21. Van De Staey, G., Gins, G., & Smets, I. (2016). Bioflocculation and activated sludge separation: a PLS case study. IFAC-Papers OnLine, 49, 1151–1156.CrossRefGoogle Scholar
  22. Villamar, C. A., Jarpa, M., Decap, J., & Vidal, G. (2009). Aerobic moving bed bioreactor performance: a comparative study of removal efficiencies of kraft mill effluents from Pinus radiata and Eucalyptus globulus. Water Science and Technology, 59, 507–514.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG Switzerland 2017

Authors and Affiliations

  • Cristina E. Almeida-Naranjo
    • 1
  • Patricio J. Espinoza-Montero
    • 1
  • Marcelo I. Muñoz-Rodríguez
    • 1
  • Cristina A. Villamar-Ayala
    • 1
  1. 1.Centro de Investigación y Control Ambiental, Departamento de Ingeniería Civil y AmbientalEscuela Politécnica NacionalQuitoEcuador

Personalised recommendations