Skip to main content

Advertisement

Log in

Modeling Urban PM2.5 Concentration by Combining Regression Models and Spectral Unmixing Analysis in a Region of East China

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Understanding the spatial distribution of PM2.5 concentration and its contributing environmental variables is critical to develop strategies of addressing adverse effects of the particulate pollution. In this study, a range of meteorological and land use factors were incorporated into a linear regression (LR) model and a logistic model-based regression (LMR) model to simulate the annual and winter PM2.5 concentrations. The vegetation cover, derived from a linear spectral unmixing analysis (LSUA), and the normalized difference built-up index (NDBI), were found to improve the goodness of fit of the models. The study shows that (1) both the LR and the LMR agree on the predicted spatial patterns of PM2.5 concentration and (2) the goodness of fit is higher for the models established based on the annual PM2.5 concentration than that based on the winter PM2.5. The modeling results show that higher PM2.5 concentration coincided with the major urban area for the annual average but focused on the suburban and rural areas for the winter. The methods introduced in this study can potentially be applied to similar regions in other developing countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akimoto, H. (2003). Global air quality and pollution. Science, 302, 1716–1719.

    Article  CAS  Google Scholar 

  • Atkinson, R. W., Anderson, H. R., Sunyer, J., Ayres, J. G., & Michela, B. (2001). Acute effects of particulate air pollution on respiratory admissions. American Journal of Respiratory and Critical Care Medicine, 164, 1860–1866.

    Article  CAS  Google Scholar 

  • Beckerman, B. S., Jerrett, M., Serre, M., Martin, R. V., Lee, S. J., Van, D. A., & Burnett, R. T. (2013). A hybrid approach to estimating national scale spatiotemporal variability of PM2.5 in the contiguous United States. Environmental Science & Technology, 47(13), 7233–7241.

    CAS  Google Scholar 

  • Beckett, K. P., FreerSmith, P. H., & Taylor, G. (2000). Particulate pollution capture by urban trees: effect of species and windspeed. Global Change Biology, 6(8), 995–1003.

    Article  Google Scholar 

  • Bian, H., Tie, X., Cao, J., Ying, Z., Han, S., & Xue, Y. (2011). Analysis of a severe dust storm event over China: application of the WRF-dust model. Aerosol and Air Quality Research, 11(4), 419–428.

    Google Scholar 

  • Cao, J., Shen, Z., Chow, J., Watson, J. G., Lee, S., Tie, X., & Han, Y. (2012). Winter and summer PM2.5 chemical compositions in fourteen Chinese cities. Journal of the Air & Waste Management Association, 62(10), 1214–1226.

    Article  CAS  Google Scholar 

  • Chaloulakou, A., Kassomenos, P., Spyrellis, N., Demokritou, P., & Koutrakis, P. (2003). Measurements of PM10 and PM2.5 particle concentrations in Athens, Greece. Atmospheric Environment, 37(5), 649–660.

    Article  CAS  Google Scholar 

  • Chen, X., Zhao, H., Li, P., & Yin, Z. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104(2), 133–146.

    Article  Google Scholar 

  • Cheng, Y., & Li, Y. (2010). Influences of traffic emissions and meteorological conditions on ambient PM10 and PM2.5 levels at a highway toll station. Aerosol and Air Quality Research, 10, 456–462.

    CAS  Google Scholar 

  • Cotrufo, M. F., De, S. Z. V., Alfani, A., Bartoli, G., & De, C. A. (1995). Effects of urban heavy metal pollution on organic matter decomposition in Quercus ilex L. woods. Environmental Pollution, 89(1), 81–87.

    Article  CAS  Google Scholar 

  • Farmer, A. (1995). Reducing the impact of air pollution on the natural environment. Joint Nature Conservation Committee pp 112.

  • Feng, J., Hu, J., Xu, B., Hu, X., Sun, P., Han, W., Gu, Z., Yu, X., & Wu, M. (2015). Characteristics and seasonal variation of organic matter in PM2.5 at a regional background site of the Yangtze River Delta region, China. Atmospheric Environment, 123, 288–297.

    Article  CAS  Google Scholar 

  • Giugliano, M., Lonati, G., Butelli, P., Romele, L., Tardivo, R., & Grosso, M. (2005). Fine particulate (PM2.5-PM1) at urban sites with different traffic exposure. Atmospheric Environment, 39(13), 2421–2431.

    Article  CAS  Google Scholar 

  • Glavas, S. D., Nikolakis, P., Ambatzoglou, D., & Mihalopoulos, N. (2008). Factors affecting the seasonal variation of mass and ionic composition of PM2.5 at a central Mediterranean coastal site. Atmospheric Environment, 42(21), 5365–5373.

    Article  CAS  Google Scholar 

  • Green, A. A., Berman, M., Switzer, P., & Craig, M. D. (1988). A transformation for ordering multispectral data in terms of image quality with implications for noise removal. Geoscience and Remote Sensing, IEEE Transaction, 26(1), 65–74.

    Article  Google Scholar 

  • Grossman, G. M., & Krueger, A. B. (1994). Economic growth and the environment (No. w4634). National Bureau of Economic Research, doi: 10.1057/9780230226203.1158.

  • Hu, X., Zhang, Y., Ding, Z., Wang, T., Lian, H., Sun, Y., & Wu, J. (2012). Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmospheric Environment, 57, 146–152.

    Article  CAS  Google Scholar 

  • Jensen, J. R., & Cowen, D. C. (1999). Remote sensing of urban/suburban infrastructure and socio-economic attributes. Photogrammetric Engineering and Remote Sensing, 65, 611–622.

    Google Scholar 

  • Kloog, I., Nordio, F., Coull, B. A., & Schwartz, J. (2012). Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2.5 exposures in the Mid-Atlantic states. Environmental Science & Technology, 46(21), 11913–11921.

    Article  CAS  Google Scholar 

  • Liu, Y., Paciorek, C. J., & Koutrakis, P. (2009). Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information. Environmental Health Perspectives, 117(6), 886.

    Article  Google Scholar 

  • Lu, D., & Weng, Q. (2006). Spectral mixture analysis of ASTER images for examining the relationship between urban thermal features and biophysical descriptors in Indianapolis, Indiana, USA. Remote Sensing of Environment, 104(2), 157–167.

    Article  Google Scholar 

  • Lu, D., Moran, E., & Batistella, M. (2003). Linear mixture model applied to Amazonian vegetation classification. Remote Sensing of Environment, 87(4), 456–469.

    Article  Google Scholar 

  • Marcazzan, G. M., Vaccaro, S., Valli, G., & Vecchi, R. (2001). Characterisation of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy). Atmospheric Environment, 35(27), 4639–4650.

    Article  CAS  Google Scholar 

  • Pope III, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA, 287(9), 1132–1141.

    Article  CAS  Google Scholar 

  • Querol, X., Alastuey, A., Viana, M. M., Rodriguez, S., Artíñano, B., Salvador, P., De, L., & Campa, A. S. (2004). Speciation and origin of PM10 and PM2.5 in Spain. Journal of Aerosol Science, 35(9), 1151–1172.

    Article  CAS  Google Scholar 

  • Rodriguez, S., Querol, X., Alastuey, A., Viana, M. M., Alarcon, M., Mantilla, E., & Ruiz, C. R. (2004). Comparative PM10-PM2.5 source contribution study at rural, urban and industrial sites during PM episodes in Eastern Spain. Science of the Total Environment, 328(1), 95–113.

    Article  CAS  Google Scholar 

  • Scott, K. I., McPherson, E. G., & Simpson, J. R. (1998). Air pollutant uptake by Sacramento’s urban forest. Journal of Arboriculture, 24, 224–234.

    Google Scholar 

  • Sparks, J. P., Monson, R. K., Sparks, K. L., & Lerdau, M. (2001). Leaf uptake of nitrogen dioxide (NO2) in a tropical wet forest: implications for tropospheric chemistry. Oecologia, 127(2), 214–221.

    Article  Google Scholar 

  • Sun, Y., Zhuang, G., Tang, A., Wang, Y., & An, Z. (2006). Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing. Environmental Science & Technology, 40(10), 3148–3155.

    Article  CAS  Google Scholar 

  • Sun, H., Qie, G., Wang, G., Tan, Y., Li, J., Peng, Y., & Luo, C. (2015). Increasing the accuracy of mapping urban forest carbon density by combining spatial modeling and spectral unmixing analysis. Remote Sensing, 7(11), 15114–15139.

    Article  Google Scholar 

  • Tallis, M., Taylor, G., Sinnett, D., & Freer-Smith, P. (2011). Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landscape and Urban Planning, 103(2), 129–138.

    Article  Google Scholar 

  • Theseira, M. A., Thomas, G., & Sannier, C. A. D. (2002). An evaluation of spectral mixture modelling applied to a semi-arid environment. International Journal of Remote Sensing, 23(4), 687–700.

    Article  Google Scholar 

  • Tiwari, S., Chate, D. M., Pragya, P., Ali, K., & Bisht, D. S. (2012). Variations in mass of the PM10, PM2.5 and PM1 during the monsoon and the winter at New Delhi. Aerosol and Air Quality Research, 12(1), 20–29.

    CAS  Google Scholar 

  • Wallace, L. (2000). Correlations of personal exposure to particles with outdoor air measurements: a review of recent studies. Aerosol Science & Technology, 32(1), 15–25.

    Article  CAS  Google Scholar 

  • Wang, S., Li, G., Gong, Z., Du, L., Zhou, Q., Meng, X., Xie, S., & Zhou, L. (2015). Spatial distribution, seasonal variation and regionalization of PM2.5 concentrations in China. Science China: Chemistry, 58(9), 1435–1443.

    Article  CAS  Google Scholar 

  • Wang, F., Guo, Z., Lin, T., & Rose, N. L. (2016). Seasonal variation of carbonaceous pollutants in PM2.5 at an urban ‘supersite’ in Shanghai, China. Chemosphere, 146, 238–244.

    Article  CAS  Google Scholar 

  • Wei, F., Teng, E., Wu, G., Hu, W., Wilson, W. E., Chapman, R. S., Pau, J. C., & Zhang, J. (1999). Ambient concentrations and elemental compositions of PM10 and PM2.5 in four Chinese cities. Environ. Sci. Technology, 33(23), 4188–4193.

    Article  CAS  Google Scholar 

  • Wiedinmyer, C., Steiner, A., & Ashworth, K. (2013). Plant influences on atmospheric chemistry. The plant sciences. Ecology and the environment. New York: Springer.

    Google Scholar 

  • Wu, C. (2004). Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery. Remote Sensing of Environment, 93(4), 480–492.

    Article  Google Scholar 

  • Wu, C., & Murray, A. T. (2003). Estimating impervious surface distribution by spectral mixture analysis. Remote Sensing of Environment, 84(4), 493–505.

    Article  Google Scholar 

  • Xiao, Q., Ma, Z., Li, S., & Liu, Y. (2015). The impact of winter heating on air pollution in China. PloS One, 10(1), e0117311. doi:10.1371/journal.pone.0117311.

    Article  Google Scholar 

  • Xiong, Y., Huang, S., Chen, F., Ye, H., Wang, C., & Zhu, C. (2012). The impacts of rapid urbanization on the thermal environment: a remote sensing study of Guangzhou, South China. Remote Sensing, 4(7), 2033–2056.

    Article  Google Scholar 

  • Yang, J., McBride, J., Zhou, J., & Sun, Z. (2005). The urban forest in Beijing and its role in air pollution reduction. Urban Forestry & Urban Greening, 3(2), 65–78.

    Article  Google Scholar 

  • Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583–594.

    Article  Google Scholar 

  • Zhang, R., Xu, F., & Han, Z. (2003). Inorganic chemical composition and source signature of PM2.5 in Beijing during ACE-Asia period. Chinese Science Bulletin, 48(10), 1002–1005.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the constructive comments from anonymous reviewers that contribute to the improvement of this paper. This study was supported by the research project “Remote sensing technology for studying urban haze pollution” awarded by the Zhejiang Province Science and Technology Public Welfare Project (2013C33027) and Zhejiang Province Science and Technology Project (LY12D01003), Zhejiang A & F University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruopu Li or Lihua Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, J., Li, R., Wang, G. et al. Modeling Urban PM2.5 Concentration by Combining Regression Models and Spectral Unmixing Analysis in a Region of East China. Water Air Soil Pollut 228, 250 (2017). https://doi.org/10.1007/s11270-017-3421-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3421-6

Keywords

Navigation