Variation in Copper Accumulation at the Tissue Level of Five Hybrid Poplars Subjected to Copper Stress

Abstract

Heavy metal contamination causes significant environmental problems around the world and poses a threat to human health. Poplar hybrids present features for potential uses in phytoremediation systems in areas with heavy metal contamination. The purpose of this study was to assess the copper (Cu) accumulation level in five poplar inter-species hybrids [(Populus trichocarpa × Populus deltoides) × P. deltoides; P. deltoides × Populus nigra; P. trichocarpa × Populus maximowiczii; P. trichocarpa × P. nigra; and (P. trichocarpa × P. deltoides) × (P. trichocarpa × P. deltoides)] grown in a hydroponic system. The treatments entailed the application of low and high doses of Cu of 8.0 and 16.0 μM, respectively. Cu accumulation was observed in roots, stems, and leaves, which was determined using flame atomic absorption spectroscopy, prior acid digestion of each sample. The methodology was validated according to certified reference material (Cypress BIMEP 432). Significant differences in Cu accumulation were found among genotypes for both roots and leaves, but not for stems. In roots, the genotype P. deltoides × P. nigra had a Cu accumulation level of 169.8% higher than the average accumulation found in the other genotypes. The (P. trichocarpa × P. deltoides) × P. deltoides hybrid showed the least Cu accumulation in leaves. The results of this study can potentially be used for proper crossovers and hybrids selection within the genus Populus for phytoremediation of Cu contaminated land.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Allen, S.E., Grimshaw, H.M., & Rowland, A.P. (1986). Chemical analysis. Methods in plant ecology. (Eds PD Moore, SB Chapman). p. 285–344.

  2. Anjum, N. A., Adam, V., Kizek, R., Duarte, A. C., Pereira, E., Iqbal, M., Lukatkin, A. S., & Ahmad, I. (2015). Nanoscale copper in the soil–plant system–toxicity and underlying potential mechanisms. Environmental Research, 138, 306–325.

    CAS  Article  Google Scholar 

  3. Borghi, M., Tognetti, R., Monteforti, G., & Sebastiani, L. (2007). Responses of Populus× euramericana (P. deltoides × P. nigra) clone Adda to increasing copper concentrations. Environmental and Experimental Botany, 61(1), 66–73.

    CAS  Article  Google Scholar 

  4. Borghi, M., Tognetti, R., Monteforti, G., & Sebastiani, L. (2008). Responses of two poplar species (Populus alba and Populus x canadensis) to high copper concentrations. Environmental and Experimental Botany, 62, 290–299.

    CAS  Article  Google Scholar 

  5. Di Baccio, D., Tognetti, R., Sebastiani, L., & Vitagliano, C. (2003). Responses of Populus deltoides× Populus nigra (Populus× euramericana) clone I-214 to high zinc concentrations. The New Phytologist, 159(2), 443–452.

    CAS  Article  Google Scholar 

  6. Evangelou, M. W., Ebel, M., & Schaeffer, A. (2007). Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere, 68(6), 989–1003.

    CAS  Article  Google Scholar 

  7. Ginocchio, R., Toro, I., Schnepf, D., & Macnair, M. R. (2002). Copper tolerance testing in populations of Mimulus luteus var. variegatus exposed and non-exposed to copper mine pollution. Geochem-Explor Env A, 2(2), 151–156.

    CAS  Article  Google Scholar 

  8. Ginocchio, R., Carvallo, G., Toro, I., Bustamante, E., Silva, Y., & Sepúlveda, N. (2004). Micro-spatial variation of soil metal pollution and plant recruitment near a copper smelter in Central Chile. Environmental Pollution, 127, 343–352.

    CAS  Article  Google Scholar 

  9. Gomes, M., Marques, T., Carneiro, M., & Soares, A. (2012). Anatomical characteristics and nutrient uptake and distribution associated with the Cd-phytoremediation capacity of Eucalyptus camaldulenses Dehnh. Journal of Soil Science and Plant Nutrition, 12(3), 481–495.

    Google Scholar 

  10. Guerra, F., Duplessis, S., Kohler, A., Martin, F., Tapia, J., Lebed, P., Zamudio, F., & González, E. (2009). Gene expression analysis of Populus deltoides roots subjected to copper stress. Environmental and Experimental Botany, 67(2), 335–344.

    CAS  Article  Google Scholar 

  11. Guerra, F., Pérez, R., Gainza, F., & Zamudio, F. (2010). Phytoremediation of heavy metals using poplars (Populus spp.): a glimpse of the plant responses to copper, cadmium and zinc stress. In I. Golubev (Ed.), Handbook of phytoremediation (pp. 387–414). NY: Nova Science Publishers.

    Google Scholar 

  12. Hassan, Z., & Aarts, M. G. (2011). Opportunities and feasibilities for biotechnological improvement of Zn, Cd or Ni tolerance and accumulation in plants. Environmental and Experimental Botany, 72(1), 53–63.

    CAS  Article  Google Scholar 

  13. Houda, Z., Bejaoui, Z., Albouchi, A., Gupta, D. K., & Corpas, F. J. (2016). Comparative study of plant growth of two poplar tree species irrigated with treated wastewater, with particular reference to accumulation of heavy metals (Cd, Pb, As, and Ni). Environmental Monitoring and Assessment, 188(2), 1–10.

    CAS  Article  Google Scholar 

  14. Karla, Y. P. (1998). Handbook of reference methods for plant analysis. USA: Soil and Plant Analysis Council, Inc., CRC Press 300 p.

    Google Scholar 

  15. Kopponen, P., Utriainen, M., Lukkari, K., Suntioinen, S., Kärenlampi, L., & Kärenlampi, S. (2001). Clonal differences in copper and zinc tolerance of birch in metal-supplemented soils. Environmental Pollution, 112(1), 89–97.

    CAS  Article  Google Scholar 

  16. Kuzovkina, Y. A., Knee, M., & Quigley, M. F. (2004). Cadmium and copper uptake and translocation in five willow (Salix L.) species. International Journal of Phytoremediation, 6(3), 269–287.

    CAS  Article  Google Scholar 

  17. Laureysens, I., Blust, R., De Temmerman, L., Lemmens, C., & Ceulemans, R. (2004). Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture: I. Seasonal variation in leaf, wood and bark concentrations. Environmental Pollution, 131(3), 485–494.

    CAS  Article  Google Scholar 

  18. Lebrun, M. (2001). Phytoremediation of toxic metals. In I. Raskin & B. Ensley (Eds.), Using plants to clean up the environment. New York: John Wiley & Sons, Inc. 2000.

    Google Scholar 

  19. Lu, L. L., Tian, S. K., Yang, X. E., Peng, H. Y., & Li, T. Q. (2013). Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii: the impact of citric acid and tartaric acid. Journal of Zhejiang University. Science. B, 14(2), 106–114.

    CAS  Article  Google Scholar 

  20. McLaughlin, M. J., Smolders, E., Degryse, F., & Rietra, R. (2011). Uptake of metals from soil into vegetables. In dealing with contaminated sites (pp. 325–367). Netherlands: Springer.

    Google Scholar 

  21. Migeon, A., Richaud, P., Guinet, F., Chalot, M., & Blaudez, D. (2009). Metal accumulation by woody species on contaminated sites in the north of France. Water Air Soil Poll, 204(1–4), 89–101.

    CAS  Article  Google Scholar 

  22. Parelho, C., Rodrigues, A. S., Cruz, J. V., & Garcia, P. (2014). Linking trace metals and agricultural land use in volcanic soils—a multivariate approach. Science of the Total Environment, 496, 241–247.

    CAS  Article  Google Scholar 

  23. Paschke, M. W., Perry, L. G., & Redente, E. F. (2006). Zinc toxicity thresholds for reclamation forb species. Water Air Soil Poll, 170(1–4), 317–330.

    CAS  Article  Google Scholar 

  24. Peng, H. Y., Yang, X. E., & Tian, S. K. (2005). Accumulation and ultrastructural distribution of copper in Elsholtzia splendens. Journal of Zhejiang University. Science. B, 6(5), 311–318.

    Article  Google Scholar 

  25. Pietrini, F., Zacchini, M., Iori, V., Pietrosanti, L., Bianconi, D., & Massacci, A. (2010). Screening of poplar clones for cadmium phytoremediation using photosynthesis, biomass and cadmium content analyses. International Journal of Phytoremediation, 12, 105–120.

    CAS  Article  Google Scholar 

  26. Pizarro, R., Flores, J. P., Tapia, J., Valdés-Pineda, R., González, D., Morales, C., Sangüesa, C., Balocchi, F., & León, L. (2016). Forest species in the recovery of soils contaminated with copper due to mining activities. Rev Chapingo. Ser Cie, 22(1), 29–43.

    Google Scholar 

  27. Pollard, A. J., Powell, K. D., Harper, F. A., Andrew, J., & Smith, C. (2002). The genetic basis of metal hyperaccumulation in plants. Critical Reviews in Plant Sciences, 21, 539–566.

    CAS  Article  Google Scholar 

  28. Pulford, I. D., & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees—a review. Environment International, 29(4), 529–540.

    CAS  Article  Google Scholar 

  29. Punshon, T., Dickinson, N. M., & Lepp, N. W. (1996). The potential of Salix clones for bioremediating metal polluted soil. In heavy metals and trees. Proceedings of a Discussion Meeting, Glasgow (pp. 93–104). Edinburgh: Institute of Chartered Foresters.

    Google Scholar 

  30. Purdy, J., & Smart, L. (2008). Hydroponic screening of shrub willow (Salix spp.) for arsenic tolerance and uptake. International Journal of Phytoremediation, 10(6), 515–528.

    CAS  Article  Google Scholar 

  31. Robinson, B. H., Green, S. R., Chancerel, B., Mills, T. M., & Clothier, B. E. (2007). Poplar for the phytomanagement of boron contaminated sites. Environmental Pollution, 150(2), 225–233.

    CAS  Article  Google Scholar 

  32. SDSG—Sustainable Development Strategies Group. (2012). Current issues in the Chilean mining sector. http://www.sdsg.org/wp-content/uploads/2010/02/10-10-08-CHILE-REPORT.pdf. Accessed 04 April 2017.

  33. Sebastiani, L., Scebba, F., & Tognetti, R. (2004). Heavy metal accumulation and growth responses in poplar clones Eridano (Populus deltoides×maximowiczii) and I-214 (P. × euramericana) exposed to industrial waste. Environmental and Experimental Botany, 52(1), 79–88.

    CAS  Article  Google Scholar 

  34. Surat, W., Kruatrachue, M., Pokethitiyook, P., Tanhan, P., & Samranwanich, T. (2008). Potential of Sonchus arvensis for the phytoremediation of lead-contaminated soil. International Journal of Phytoremediation, 10(4), 325–342.

    CAS  Article  Google Scholar 

  35. Sytar, O., Kumar, A., Latowski, D., Kuczynska, P., Strzałka, K., & Prasad, M. N. V. (2013). Heavy metal induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiologiae Plantarum, 35(4), 985–999.

    CAS  Article  Google Scholar 

  36. Tanhan, P., Kruatrachue, M., Pokethitiyook, P., & Chaiyarat, R. (2007). Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson]. Chemosphere, 68(2), 323–329.

    CAS  Article  Google Scholar 

  37. Tapia, J., Vargas-Chacoff, L., Bertran, C., Peña-Cortés, F., Hauenstein, E., Valderrama, A., Lizana, C., & Fierro, P. (2014). Accumulation of potentially toxic elements in sediments in Budi Lagoon, Araucania Region, Chile. Environment and Earth Science, 72, 4283–4290.

    CAS  Article  Google Scholar 

  38. Utmazian, M. N. D. S., Wieshammer, G., Vega, R., & Wenzel, W. W. (2007). Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environmental Pollution, 148(1), 155–165.

    Article  Google Scholar 

  39. Valderrama, A., Tapia, J., Peñailillo, P., & Carvajal, D. E. (2013). Water phytoremediation of cadmium and copper using Azolla filiculoides Lam. in a hydroponic system. Water Environment Journal, 27(3), 293–300.

    CAS  Google Scholar 

  40. Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., Thewys, T., Vassilev, A., Meers, E., Nehnevajova, E., Mench, M., & Van der Lelie, D. (2009). Phytoremediation of contaminated soils and groundwater: lessons from the field. Environemental Science and Pollution Research, 16(7), 765–794.

    CAS  Article  Google Scholar 

  41. Walinga, I., Van der Lee, J. J., Houba, V. J. G., Van Vark, W., & Novozamsky, I. (1995). Plant analysis manual. Dordrecht: Kluwer Academia Publishers 253p.

    Google Scholar 

  42. Wang, Y., & Greger, M. (2004). Clonal differences in mercury tolerance, accumulation, and distribution in willow. Journal of Environmental Quality, 33(5), 1779–1785.

    CAS  Article  Google Scholar 

  43. Xiong, Z. T., & Wang, H. (2005). Copper toxicity and bioaccumulation in Chinese cabbage (Brassica pekinensis Rupr.) Environmental Toxicology, 20(2), 188–194.

    CAS  Article  Google Scholar 

  44. Zhivotovsky, O. P., Kuzovkina, J. A., Schulthess, C. P., Morris, T., Pettinelli, D., & Ge, M. (2010). Hydroponic screening of willows (Salix L.) for lead tolerance and accumulation. International Journal of Phytoremediation, 13(1), 75–94.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Interdisciplinary Excellence in Research Program (PIEI) (Quimica y Bio-organica en Recursos Naturales), Universidad de Talca, and CONICYT/FONDAP/15130015. J. Cornejo thanks the CONICYT Scholarship Program for supporting his Ph.D. studies at the University of Talca (CONICYT PCHA/Doctorado Nacional/21130236).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jorge Cornejo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cornejo, J., Tapia, J., Guerra, F. et al. Variation in Copper Accumulation at the Tissue Level of Five Hybrid Poplars Subjected to Copper Stress. Water Air Soil Pollut 228, 212 (2017). https://doi.org/10.1007/s11270-017-3384-7

Download citation

Keywords

  • Heavy metal contamination
  • Phytoremediation
  • Hybrid poplar
  • Copper resistance
  • Hydroponics
  • Screening test