Skip to main content

Chromium in Agricultural Soils and Crops: A Review

Abstract

The mobility and distribution of metals in the environment is related not only to their concentration but also to their availability in the environment. Most chromium (Cr) exists in oxidation states ranging from 0 to VI in soils but the most stable and common forms are Cr(0), Cr(III), and Cr(VI) species. Chromium can have positive and negative effects on health, according to the dose, exposure time, and its oxidation state. The last is highly soluble; mobile; and toxic to humans, animals, and plants. On the contrary, Cr(III) has relatively low toxicity and mobility and it is one of the micronutrients needed by humans. In addition, Cr(III) can be absorbed on the surface of clay minerals in precipitates or complexes. Thus, the approaches converting Cr(VI) to Cr(III) in soils and waters have received considerable attention. The Cr(III) compounds are sparingly soluble in water and may be found in water bodies as soluble Cr(III) complexes, while the Cr(VI) compounds are readily soluble in water. Chromium is absorbed by plants through carriers of essential ions such as sulfate. Chromium uptake, accumulation, and translocation, depend on its speciation. Chromium shortage can cause cardiac problems, metabolic dysfunctions, and diabetes. Symptoms of Cr toxicity in plants comprise decrease of germination, reduction of growth, inhibition of enzymatic activities, impairment of photosynthesis and oxidative imbalances. This review provides an overview of the chemical characteristics of Cr, its behavior in the environment, the relationships with plants and aspects of the use of fertilizers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Adriano, D. C. (1984). In R. S. De Santo (Ed.), Chromium. Heavy metals in natural water. Heidelberg, Germany: Springer-Verlag Pub. Co.

    Google Scholar 

  • Adriano, D.C. (1986). Chromium. In: Trace elements in the terrestrial environment (pp. 58–76). New York: Springer Pub. Co.

  • Anjum, S. A., Ashraf, U., Khan, I., Saleem, M. F., & Wang, L. C. (2016). Chromium toxicity induced alterations in growth, photosynthesis, gas exchange attributes and yield formation in maize. Pakistan Journal of Agricultural Sciences, 53, 751–757.

    Article  Google Scholar 

  • Alloway, B. J. (1995). Heavy metals in soils (2nd ed.). London: Blackie Academic & Professional.

    Book  Google Scholar 

  • APAT (2003). Agenzia per la protezione dell’ambiente e per i servizi tecnici. Annuario dei dati ambientali (pp. 1013).

  • APAT (2006). Agenzia per la protezione dell’ambiente e per i servizi tecnici. Annuario dei dati ambientali 2005–2006, (pp. 1218).

  • Atia, A. A. (2008). Adsorption of chromate and molybdate by cetylpyridinium bentonite. Applied Clay Science, 41, 73–84.

    CAS  Article  Google Scholar 

  • Barnhart, J. (1997). Occurrences, uses, and properties of chromium. Regulatory Toxicology and Pharmacology, 26, 3–7.

    Article  Google Scholar 

  • Bartlett, R. J. (1991). Chromium cycling in soils and water: links, gaps and methods. Environmental Health Perspectives, 92, 17–24.

    CAS  Article  Google Scholar 

  • Bartlett, R. J. (1997). Chromium redox mechanisms in soils: should we worry about Cr(VI)? In S. Canali, F. Tittarelli, & P. Sequi (Eds.), Chromium environmental issues (pp. 1–20). Bologna: Franco-Angeli Editore.

    Google Scholar 

  • Bartlett, R. J., & Kimble, J. M. (1976). Behaviour of chromium in soils: I. Trivalent forms. Journal of Environmental Quality, 5, 379–383.

    CAS  Article  Google Scholar 

  • Bartlett, R.J., & James, B.R. (1988). Mobility and bioavailability of chromium in soils. In: J.O. Nriagu and E Nieboer (Ed.), Chromium in the Natural and Human Environment (pp. 267–304). USA: Wiley and Sons. Inc.

  • Becquer, T., Quantin, C., Sicot, M., & Boudot, J. P. (2003). Chromium availability in ultramafic soils from New Caledonia. The Science of the Total Environment, 301, 251–261.

    CAS  Article  Google Scholar 

  • Biacs, P. A., Daood, H. G., & Kádár, I. (1995). Effect of Mose, Zn, Zn, and Cr treatments on the yield, element concentration, and carotenoid content of carrots. Journal of Agricultural and Food Chemistry, 43, 589–591.

    CAS  Article  Google Scholar 

  • Branca, M., Dessi, A., Kozlowski, H., Micera, G., & Swiatek, J. (1990). Reduction of chromate ions by glutatione tripeptide in the presence of sugar ligands. Journal of Inorganic Biochemistry, 39, 217–226.

    CAS  Article  Google Scholar 

  • Cary, E. E., Alloway, W. H., & Olson, D. E. (1977). Control of chromium concentration in food plants. I. Absorption and translocation of chromium by plants. Journal of Agricultural and Food Chemistry, 25, 300–304.

    CAS  Article  Google Scholar 

  • Calliari, I., Concheri, G., & Nardi, S. (1993). EDXRF study of the effects of Cr on the growth of barley seedlings. X-Ray Spectrometry, 22, 332–337.

    CAS  Article  Google Scholar 

  • Cervantes, C., Campos-García, J., Devars, S., Gutiérrez-Corona, F., Loza-Tavera, H., Torres-Guzmán, J. C., & Moreno-Sánchez, R. (2001). Interactions of chromium with microorganisms and plants. FEMS Microbiology Reviews, 25, 335–347.

    CAS  Article  Google Scholar 

  • Cervantes, C., & Campos-G. (2007). Reduction and efflux of chromate by bacteria. Microbiology Monographs, 6, 407–419.

    Article  Google Scholar 

  • Chatterjee, J., & Chatterjee, C. (2000). Phytotoxicity of cobalt, chromium and copper in cauliflower. Environmental Pollution, 109, 69–74.

    CAS  Article  Google Scholar 

  • Chen, C. W., Chen, C. F., & Dong, C. D. (2012). Distribution and accumulation of mercury in sediments of kaohsiung river mouth, Taiwan. APCBEE Procedia, 1, 153–158.

    CAS  Article  Google Scholar 

  • Cheung, K. H., & Gu, J. D. (2007). Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. International Biodeterioration & Biodegradation., 59, 8–15.

    CAS  Article  Google Scholar 

  • Ciavatta, C., & Sequi, P. (1989). Evaluation of chromium release during the decomposition of leather meal fertilizers applied to the soil. Fertilizer Research, 19, 7–11.

    CAS  Article  Google Scholar 

  • Dheeba, B., Sampathkumar, P., & Kannan, K. (2014). Chromium accumulation potential of Zea mays grown under four different fertilizers. Indian Journal of Experimental Biology, 52, 1206–1210.

    CAS  Google Scholar 

  • Dixit, V., Pandey, V., & Shyam, R. (2002). Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria. Plant, Cell & Environment, 25, 687–693.

    CAS  Article  Google Scholar 

  • De Vivo, B., Lima, A., & Siegel, F.R. (2004). Geochimica ambientale. Metalli potenzialmente tossici. Liguori ed., 449 pp.

  • Deepali, G., & Gangwar, K. K. (2009). Chromium uptake efficiency of Spinacea olaracea from contaminated soil. Journal of Applied Sciences and Environmental Management, 13, 71–72.

    Google Scholar 

  • Fozia, A., Muhammad, A. Z., Muhammad, A., & Zafar, M. K. (2008). Effect of chromium on growth attributes in sunflower (Helianthus annus L.) Journal of Environmental Sciences, 20, 1475–1480.

    CAS  Article  Google Scholar 

  • Gorsuch, J.W., Ritter, M.A., & Anderson, E.R. (1995). Comparative toxicities of six heavy metals using root elongation and shoot growth in three plant species. In: The symposium on environmental toxicology and risk assessment (pp. 26–29). Atlanta.

  • Grubinger, V. P., Gutenmann, W. H., Doss, G. J., Rutzke, M., & Lisk, D. J. (1994). Chromium in Swiss chard grown on soil amended with tannery meal fertilizer. Chemosphere, 28, 717–720.

    CAS  Article  Google Scholar 

  • Gu, H., Rapole, S. B., Sharma, J., Huang, Y., Cao, D., Colorado, H. A., Luo, Z., Haldolaarachchige, N., Young, D. P., & Walters, B. (2012). Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal. RSC Advances, 2, 11007–11018.

    CAS  Article  Google Scholar 

  • Gupta, A. K., & Sinha, S. (2006). Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge: selection of single extractants. Chemosphere, 64, 161–173.

    CAS  Article  Google Scholar 

  • Hara, T., & Sonoda, Y. (1979). Comparison of the toxicity of heavy metals to cabbage growth. Plant and Soil, 51, 127–133.

    CAS  Article  Google Scholar 

  • He, Z., Gao, F., Sha, T., Hu, Y., & He, C. (2009). Isolation and characterization of a Cr(VI)- reduction Ochrobactrum sp. strain CSCr-3 from chromium landfill. Journal of Hazardous Materials, 163, 869–873.

    CAS  Article  Google Scholar 

  • Hrudayanath, T., Sasmita, D., Jigni, M., Bhagwat, P. R., & Nigamananda, D. (2014). Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. Journal of Environmental Management, 146, 383–399.

    Article  Google Scholar 

  • Jun, R., Ling, T., & Guanghua, Z. (2009). Effects of chromium on seed germination, root elongation and coleoptiles growth in six pulses. International journal of Environmental Science and Technology, 6, 571–578.

    CAS  Article  Google Scholar 

  • Kimbrough, D. E., Cohen, Y., Winer, A. M., Creelman, L., & Mabuni, C. (1999). A critical assessment of chromium in the environment. Critical Reviews in Environmental Science and Technology, 29, 1–46.

    CAS  Article  Google Scholar 

  • Katz, S. A., & Salem, H. (1994). The biological and environmental chemistry of chromium (pp. 139–156). New York: VCH Publisher.

    Google Scholar 

  • Kotaś, J., & Stasicka, Z. (2000). Chromium occurrence in the environment and methods of its speciation. Environmental Pollution, 107, 263–283.

    Article  Google Scholar 

  • Lapo, L. R., Hengl, T., & Reuter, H. I. (2008). Heavy metals in European soils: a geostatistical analysis of the FOREGS geochemical database. Geoderma, 148, 189–199.

    Article  Google Scholar 

  • Mangabeira, P. A., Gavrilov, K. L., de Almeida, A. A. F., Oliveira, A. H., Severo, M. I., Rosa, T. S., Montañés, M. T., Sánchez-Tovar, R., & Roux, M. S. (2014). The effectiveness of the stabilization/solidification process on the leachability and toxicity of the tannery sludge chromium. Journal of Environmental Management, 143, 71–79.

    Article  Google Scholar 

  • McGrath, G. (1982). The uptake and translocation of tri- and hexa-valent chromium and effects on the growth of oat in flowing nutrient solution and in soil. The New Phytologist, 92, 381–390.

    CAS  Article  Google Scholar 

  • Mishra, S., Shanker, K., Srivastava, M. M., Srivastava, S., Shrivastav, R., Dass, S., & Prakash, S. (1997). A study on the uptake of trivalent and hexavalent chromium by paddy (Oryza sativa): possible chemical modifications in rhizosphere. Agriculture, Ecosystems & Environment, 62, 53–58.

    CAS  Article  Google Scholar 

  • Moral, R., Navarro Pedreno, J., Gomez, I., & Mataix, J. (2008). Effects of chromium on the nutrient element content and morphology of tomato. Journal of Plant Nutrition, 18, 815–822.

    Article  Google Scholar 

  • Naqvi, S. M., & Ritzi, S. A. (2000). Accumulation of chromium and copper in three different soils and bioaccumulation in an aquatic plant, Alternanthera philoxeroides. Bulletin of Environmental Contamination and Toxicology, 65, 55–61.

    CAS  Article  Google Scholar 

  • Nriagu, J. O. (1988). A silent epidemic of environmental metal poisoning? Environmental Pollution, 50, 139–161.

    CAS  Article  Google Scholar 

  • Oze, C., Bird, D. K., & Fendorf, S. (2007). Genesis of hexavalent chromium from natural sources in soil and groundwater. Proceedings of the National Academy of Sciences, 104, 6544–6549.

    CAS  Article  Google Scholar 

  • Panda, S. K. (2007). Chromium-mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. Journal of Plant Physiology, 164, 1419–1428.

    CAS  Article  Google Scholar 

  • Panda, S. K., & Choudhury, S. (2005). Chromium stress in plants. Brazilian Journal of Plant Physiology, 17, 95–102.

    CAS  Article  Google Scholar 

  • Panda, S. K., & Patra, H. K. (2000). Nitrate and ammonium ions effect on the chromium toxicity in developing wheat seedlings. Proceedings of the National Academy of Sciences India. Section B, Biological Sciences, 70, 75–80.

    CAS  Google Scholar 

  • Pandey, V., Dixit, V., & Shyam, R. (2005). Antioxidative responses in relation to growth of mustard (Brassica juncea cv. Pusa Jaikisan) plants exposed to hexavalent chromium. Chemosphere, 61, 40–47.

    CAS  Article  Google Scholar 

  • Peralta, J. R., Gardea-Torresdey, J. L., Tiemann, K. J., Gomez, E., Arteaga, S., Rascon, E., & Parsons, J. G. (2001). Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.) Bulletin of Environmental Contamination and Toxicology, 66, 727–734.

    CAS  Google Scholar 

  • Qiu, B., Xu, C., Sun, D., Wei, H., Zhang, X., Guo, J., Wang, Q., Rutman, D., Guo, Z., & Wei, S. (2014). Polyaniline coating on carbon fiber fabrics for improved hexavalent chromium removal. RSC Advances, 4, 29855–29865.

    CAS  Article  Google Scholar 

  • Sauerbeck, D. R. (1991). Plant, element and soil properties governing uptake and availability of heavy metals derived from sewage sludge. Water, Air, and Soil Pollution, 57, 227–237.

    Article  Google Scholar 

  • Schiavon, M., Agostini, G., Pittarello, M., Dalla Vecchia, F., Pastore, P., & Malagoli, M. (2009). Interactions between chromate and sulfate affect growth, photosynthesis and ultrastructure in Brassica juncea (L.) Czern. In: A. Sirko, L. J. De Kok, S. Haneklaus, M. J. Hawkesford, H. Rennenberg, K. Saito, E. Schnug, I. Stulen (Eds.), Sulfur metabolism in plants. Backhuys publishers, Leiden; Margraf publishers, Weikersheim.

  • Salmani, A. A., & Fazaelipoor, M. H. (2016). Evaluation of rhamnolipid (RL) as a biosurfactant for the removal of chromium from aqueous solutions by precipitate flotation. Journal of Environmental Management, 165, 184–187.

    Article  Google Scholar 

  • Shahandeh, H., & Hossner, L. R. (2000). Enhancement of Cr(III) phytoaccumulation. International Journal of Phytoremediation, 2, 269–286.

    CAS  Article  Google Scholar 

  • Shaker, A. K., Djanaguiraman, M., & Venkateswarlu, B. (2009). Chromium in plants: current status and future strategies. Metallomics, 1, 375–383.

    Article  Google Scholar 

  • Shanker, A. K., Djanaguiraman, D., Sudhagar, R., Chandrashekar, C. N., & Pathmanabhan, G. (2004). Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R. Wilczek. cv CO4) roots. Plant Science, 166, 1035–1043.

    CAS  Article  Google Scholar 

  • Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environmental International, 31, 739–753.

    CAS  Article  Google Scholar 

  • Shanker, A. K., Djanaguiraman, M., & Venkateswarlu, B. (2009). Chromium in plants: current status and future strategies. Metallomics, 1, 375–383.

    CAS  Article  Google Scholar 

  • Sharma, D. C., Chatterjee, C., & Sharma, C. P. (1995). Chromium accumulation and its effects on wheat (Triticum aestivum L. cv. HD2204) metabolism. Plant Science, 111, 145–151.

    CAS  Article  Google Scholar 

  • Silva, S. (1977). Impiego di concimi organici a base di cuoio torrefatto; determinazione delle concentrazioni di cromo nei vegetali e valutazione delle possibilità di inquinamento delle falde freatiche. In Annali della Facoltà di Agraria dell’Università Cattolica del Sacro Cuore, Piacenza, 17, 1–38.

    Google Scholar 

  • Skeffington, R. A., Shewry, P. R., & Peterson, P. J. (1976). Chromium uptake and transport in barley seedlings (Hordeum Vulgare L.) Planta, 132, 209–214.

    CAS  Article  Google Scholar 

  • Srivastava, S., Srivastava, S., Prakash, S., & Srivastava, M. M. (1998). Fate of trivalent chromium in presence of organic acids. Chemical Speciation and Bioavailability, 10, 147–150.

    CAS  Article  Google Scholar 

  • Stollenwerk, K. G., & Grove, D. B. (1985). Adsorption and desorption of hexavalent chromium in an alluvial aquifer near telluride, Colorado. Journal of Environmental Quality, 14, 150–155.

    CAS  Article  Google Scholar 

  • U.N.I.C. Unipne Nazionale Industria Conciaria. (2012). Rapporto di Sostenibilità pp.97

  • U.S.E.P.A U.S. Environmental Protection Agency. (2000). Effluent limitations guidelines, pretreatment standards, commercial hazardous waste combustor subcategory, “Federal Register” 65(18),40 CFR part 423. Washington DC: EPA-Water.

    Google Scholar 

  • Wang, J., Pan, K., Giannelis, E. P., & Cao, B. (2013). Polyacrylonitrile/polyaniline core/shell nanofiber mat for removal of hexavalent chromium from aqueous solution: mechanism and applications. RSC Advances, 3, 8978–8987.

    CAS  Article  Google Scholar 

  • Vajpayee, P., Rai, U. N., Ali, M. B., Tripathi, R. D., Yadav, V., Sinha, S., & Singh, S. N. (2001). Chromium-induced physiologic changes in Vallisneria spiralis L. and its role in phytoremediation of tannery effluent. Bulletin of Environmental Contamination and Toxicology, 67, 246–256.

    CAS  Google Scholar 

  • Vajpayee, P., Rai, U. N., Sinha, S., Tripathi, R. D., & Chandra, P. (1995). Bioremediation of tannery effluent by aquatic macrophytes. Bulletin of Environmental Contamination and Toxicology, 55, 546–553.

    CAS  Article  Google Scholar 

  • Vajpayee, P., Sharma, S. C., Tripathi, R. D., Rai, U. N., & Yunus, M. (1999). Bioaccumulation of chromium and toxicity to photosynthetic pigments, nitrate reductase activity and protein content of Nelumbo nucifera Gaertn. Chemosphere, 39, 2159–2169.

    CAS  Article  Google Scholar 

  • Vernay, P., Gauthier-Moussard, C., Jean, L., Bordas, F., Faure, O., Ledoigt, G., & Hitmi, A. (2008). Effect of chromium species on phytochemical and physiological parameters in Datura innoxia. Chemosphere, 72, 763–771.

    CAS  Article  Google Scholar 

  • Wahaab, R. A., Lubberding, H. J., & Alaerts, G. J. (1995). Copper and chromium (III) uptake by duckweed. Water Science and Technology, 32, 105–110.

    Google Scholar 

  • WHO (World Health Organization), Regional Office for Europe (2000). Inorganic pollutants, in air quality guide-lines for Europe, Second Edition, WHO Regional Publications, European Series, N° 91, Copenhagen (pp. 123–135).

  • Zampella, M., Adamo, P., Laurent, C., Petit, S., Righi, D., & Terribile, F. (2010). Chromium and copper in micromorphological features and clay fractions of volcanic soils with andic properties. Geoderma, 3-4, 185–195.

    Article  Google Scholar 

  • Zayed, A., Lytle, C. M., Qian, J. H., & Terry, N. (1998). Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta, 206, 293–299.

    CAS  Article  Google Scholar 

  • Zayed, A. M., & Terry, N. (2003). Chromium in the environment: factors affecting biological remediation. Plant and Soil, 249, 139–156.

    CAS  Article  Google Scholar 

  • Zeid, I. M. (2001). Responses of Phaseolus vulgaris to chromium and cobalt treatments. Biologia Plantarum, 44, 111–115.

    CAS  Article  Google Scholar 

  • Zlatareva, E., Nikolov, N., & Nikolaev, A. (1999). Uptake of Cr(III) by alfalfa depending on pH and the level of pollution of the soil. Pochvoznanie Agrokhimiya Ekologiya, 34, 49–53.

    CAS  Google Scholar 

  • Zurayk, R., Sukkariyah, B., & Baalbaki, R. (2001). Common hydrophytes as bioindicators of nickel, chromium and cadmium pollution. Water, Air and Soil Pollution, 127, 373–388.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Ertani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ertani, A., Mietto, A., Borin, M. et al. Chromium in Agricultural Soils and Crops: A Review. Water Air Soil Pollut 228, 190 (2017). https://doi.org/10.1007/s11270-017-3356-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3356-y

Keywords

  • Chromium
  • Speciation
  • Agricultural soil
  • Anthropic pollution