Adriano, D. C. (1984). In R. S. De Santo (Ed.), Chromium. Heavy metals in natural water. Heidelberg, Germany: Springer-Verlag Pub. Co.
Google Scholar
Adriano, D.C. (1986). Chromium. In: Trace elements in the terrestrial environment (pp. 58–76). New York: Springer Pub. Co.
Anjum, S. A., Ashraf, U., Khan, I., Saleem, M. F., & Wang, L. C. (2016). Chromium toxicity induced alterations in growth, photosynthesis, gas exchange attributes and yield formation in maize. Pakistan Journal of Agricultural Sciences, 53, 751–757.
Article
Google Scholar
Alloway, B. J. (1995). Heavy metals in soils (2nd ed.). London: Blackie Academic & Professional.
Book
Google Scholar
APAT (2003). Agenzia per la protezione dell’ambiente e per i servizi tecnici. Annuario dei dati ambientali (pp. 1013).
APAT (2006). Agenzia per la protezione dell’ambiente e per i servizi tecnici. Annuario dei dati ambientali 2005–2006, (pp. 1218).
Atia, A. A. (2008). Adsorption of chromate and molybdate by cetylpyridinium bentonite. Applied Clay Science, 41, 73–84.
CAS
Article
Google Scholar
Barnhart, J. (1997). Occurrences, uses, and properties of chromium. Regulatory Toxicology and Pharmacology, 26, 3–7.
Article
Google Scholar
Bartlett, R. J. (1991). Chromium cycling in soils and water: links, gaps and methods. Environmental Health Perspectives, 92, 17–24.
CAS
Article
Google Scholar
Bartlett, R. J. (1997). Chromium redox mechanisms in soils: should we worry about Cr(VI)? In S. Canali, F. Tittarelli, & P. Sequi (Eds.), Chromium environmental issues (pp. 1–20). Bologna: Franco-Angeli Editore.
Google Scholar
Bartlett, R. J., & Kimble, J. M. (1976). Behaviour of chromium in soils: I. Trivalent forms. Journal of Environmental Quality, 5, 379–383.
CAS
Article
Google Scholar
Bartlett, R.J., & James, B.R. (1988). Mobility and bioavailability of chromium in soils. In: J.O. Nriagu and E Nieboer (Ed.), Chromium in the Natural and Human Environment (pp. 267–304). USA: Wiley and Sons. Inc.
Becquer, T., Quantin, C., Sicot, M., & Boudot, J. P. (2003). Chromium availability in ultramafic soils from New Caledonia. The Science of the Total Environment, 301, 251–261.
CAS
Article
Google Scholar
Biacs, P. A., Daood, H. G., & Kádár, I. (1995). Effect of Mose, Zn, Zn, and Cr treatments on the yield, element concentration, and carotenoid content of carrots. Journal of Agricultural and Food Chemistry, 43, 589–591.
CAS
Article
Google Scholar
Branca, M., Dessi, A., Kozlowski, H., Micera, G., & Swiatek, J. (1990). Reduction of chromate ions by glutatione tripeptide in the presence of sugar ligands. Journal of Inorganic Biochemistry, 39, 217–226.
CAS
Article
Google Scholar
Cary, E. E., Alloway, W. H., & Olson, D. E. (1977). Control of chromium concentration in food plants. I. Absorption and translocation of chromium by plants. Journal of Agricultural and Food Chemistry, 25, 300–304.
CAS
Article
Google Scholar
Calliari, I., Concheri, G., & Nardi, S. (1993). EDXRF study of the effects of Cr on the growth of barley seedlings. X-Ray Spectrometry, 22, 332–337.
CAS
Article
Google Scholar
Cervantes, C., Campos-García, J., Devars, S., Gutiérrez-Corona, F., Loza-Tavera, H., Torres-Guzmán, J. C., & Moreno-Sánchez, R. (2001). Interactions of chromium with microorganisms and plants. FEMS Microbiology Reviews, 25, 335–347.
CAS
Article
Google Scholar
Cervantes, C., & Campos-G. (2007). Reduction and efflux of chromate by bacteria. Microbiology Monographs, 6, 407–419.
Article
Google Scholar
Chatterjee, J., & Chatterjee, C. (2000). Phytotoxicity of cobalt, chromium and copper in cauliflower. Environmental Pollution, 109, 69–74.
CAS
Article
Google Scholar
Chen, C. W., Chen, C. F., & Dong, C. D. (2012). Distribution and accumulation of mercury in sediments of kaohsiung river mouth, Taiwan. APCBEE Procedia, 1, 153–158.
CAS
Article
Google Scholar
Cheung, K. H., & Gu, J. D. (2007). Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. International Biodeterioration & Biodegradation., 59, 8–15.
CAS
Article
Google Scholar
Ciavatta, C., & Sequi, P. (1989). Evaluation of chromium release during the decomposition of leather meal fertilizers applied to the soil. Fertilizer Research, 19, 7–11.
CAS
Article
Google Scholar
Dheeba, B., Sampathkumar, P., & Kannan, K. (2014). Chromium accumulation potential of Zea mays grown under four different fertilizers. Indian Journal of Experimental Biology, 52, 1206–1210.
CAS
Google Scholar
Dixit, V., Pandey, V., & Shyam, R. (2002). Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria. Plant, Cell & Environment, 25, 687–693.
CAS
Article
Google Scholar
De Vivo, B., Lima, A., & Siegel, F.R. (2004). Geochimica ambientale. Metalli potenzialmente tossici. Liguori ed., 449 pp.
Deepali, G., & Gangwar, K. K. (2009). Chromium uptake efficiency of Spinacea olaracea from contaminated soil. Journal of Applied Sciences and Environmental Management, 13, 71–72.
Google Scholar
Fozia, A., Muhammad, A. Z., Muhammad, A., & Zafar, M. K. (2008). Effect of chromium on growth attributes in sunflower (Helianthus annus L.) Journal of Environmental Sciences, 20, 1475–1480.
CAS
Article
Google Scholar
Gorsuch, J.W., Ritter, M.A., & Anderson, E.R. (1995). Comparative toxicities of six heavy metals using root elongation and shoot growth in three plant species. In: The symposium on environmental toxicology and risk assessment (pp. 26–29). Atlanta.
Grubinger, V. P., Gutenmann, W. H., Doss, G. J., Rutzke, M., & Lisk, D. J. (1994). Chromium in Swiss chard grown on soil amended with tannery meal fertilizer. Chemosphere, 28, 717–720.
CAS
Article
Google Scholar
Gu, H., Rapole, S. B., Sharma, J., Huang, Y., Cao, D., Colorado, H. A., Luo, Z., Haldolaarachchige, N., Young, D. P., & Walters, B. (2012). Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal. RSC Advances, 2, 11007–11018.
CAS
Article
Google Scholar
Gupta, A. K., & Sinha, S. (2006). Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge: selection of single extractants. Chemosphere, 64, 161–173.
CAS
Article
Google Scholar
Hara, T., & Sonoda, Y. (1979). Comparison of the toxicity of heavy metals to cabbage growth. Plant and Soil, 51, 127–133.
CAS
Article
Google Scholar
He, Z., Gao, F., Sha, T., Hu, Y., & He, C. (2009). Isolation and characterization of a Cr(VI)- reduction Ochrobactrum sp. strain CSCr-3 from chromium landfill. Journal of Hazardous Materials, 163, 869–873.
CAS
Article
Google Scholar
Hrudayanath, T., Sasmita, D., Jigni, M., Bhagwat, P. R., & Nigamananda, D. (2014). Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. Journal of Environmental Management, 146, 383–399.
Article
Google Scholar
Jun, R., Ling, T., & Guanghua, Z. (2009). Effects of chromium on seed germination, root elongation and coleoptiles growth in six pulses. International journal of Environmental Science and Technology, 6, 571–578.
CAS
Article
Google Scholar
Kimbrough, D. E., Cohen, Y., Winer, A. M., Creelman, L., & Mabuni, C. (1999). A critical assessment of chromium in the environment. Critical Reviews in Environmental Science and Technology, 29, 1–46.
CAS
Article
Google Scholar
Katz, S. A., & Salem, H. (1994). The biological and environmental chemistry of chromium (pp. 139–156). New York: VCH Publisher.
Google Scholar
Kotaś, J., & Stasicka, Z. (2000). Chromium occurrence in the environment and methods of its speciation. Environmental Pollution, 107, 263–283.
Article
Google Scholar
Lapo, L. R., Hengl, T., & Reuter, H. I. (2008). Heavy metals in European soils: a geostatistical analysis of the FOREGS geochemical database. Geoderma, 148, 189–199.
Article
Google Scholar
Mangabeira, P. A., Gavrilov, K. L., de Almeida, A. A. F., Oliveira, A. H., Severo, M. I., Rosa, T. S., Montañés, M. T., Sánchez-Tovar, R., & Roux, M. S. (2014). The effectiveness of the stabilization/solidification process on the leachability and toxicity of the tannery sludge chromium. Journal of Environmental Management, 143, 71–79.
Article
Google Scholar
McGrath, G. (1982). The uptake and translocation of tri- and hexa-valent chromium and effects on the growth of oat in flowing nutrient solution and in soil. The New Phytologist, 92, 381–390.
CAS
Article
Google Scholar
Mishra, S., Shanker, K., Srivastava, M. M., Srivastava, S., Shrivastav, R., Dass, S., & Prakash, S. (1997). A study on the uptake of trivalent and hexavalent chromium by paddy (Oryza sativa): possible chemical modifications in rhizosphere. Agriculture, Ecosystems & Environment, 62, 53–58.
CAS
Article
Google Scholar
Moral, R., Navarro Pedreno, J., Gomez, I., & Mataix, J. (2008). Effects of chromium on the nutrient element content and morphology of tomato. Journal of Plant Nutrition, 18, 815–822.
Article
Google Scholar
Naqvi, S. M., & Ritzi, S. A. (2000). Accumulation of chromium and copper in three different soils and bioaccumulation in an aquatic plant, Alternanthera philoxeroides. Bulletin of Environmental Contamination and Toxicology, 65, 55–61.
CAS
Article
Google Scholar
Nriagu, J. O. (1988). A silent epidemic of environmental metal poisoning? Environmental Pollution, 50, 139–161.
CAS
Article
Google Scholar
Oze, C., Bird, D. K., & Fendorf, S. (2007). Genesis of hexavalent chromium from natural sources in soil and groundwater. Proceedings of the National Academy of Sciences, 104, 6544–6549.
CAS
Article
Google Scholar
Panda, S. K. (2007). Chromium-mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. Journal of Plant Physiology, 164, 1419–1428.
CAS
Article
Google Scholar
Panda, S. K., & Choudhury, S. (2005). Chromium stress in plants. Brazilian Journal of Plant Physiology, 17, 95–102.
CAS
Article
Google Scholar
Panda, S. K., & Patra, H. K. (2000). Nitrate and ammonium ions effect on the chromium toxicity in developing wheat seedlings. Proceedings of the National Academy of Sciences India. Section B, Biological Sciences, 70, 75–80.
CAS
Google Scholar
Pandey, V., Dixit, V., & Shyam, R. (2005). Antioxidative responses in relation to growth of mustard (Brassica juncea cv. Pusa Jaikisan) plants exposed to hexavalent chromium. Chemosphere, 61, 40–47.
CAS
Article
Google Scholar
Peralta, J. R., Gardea-Torresdey, J. L., Tiemann, K. J., Gomez, E., Arteaga, S., Rascon, E., & Parsons, J. G. (2001). Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.) Bulletin of Environmental Contamination and Toxicology, 66, 727–734.
CAS
Google Scholar
Qiu, B., Xu, C., Sun, D., Wei, H., Zhang, X., Guo, J., Wang, Q., Rutman, D., Guo, Z., & Wei, S. (2014). Polyaniline coating on carbon fiber fabrics for improved hexavalent chromium removal. RSC Advances, 4, 29855–29865.
CAS
Article
Google Scholar
Sauerbeck, D. R. (1991). Plant, element and soil properties governing uptake and availability of heavy metals derived from sewage sludge. Water, Air, and Soil Pollution, 57, 227–237.
Article
Google Scholar
Schiavon, M., Agostini, G., Pittarello, M., Dalla Vecchia, F., Pastore, P., & Malagoli, M. (2009). Interactions between chromate and sulfate affect growth, photosynthesis and ultrastructure in Brassica juncea (L.) Czern. In: A. Sirko, L. J. De Kok, S. Haneklaus, M. J. Hawkesford, H. Rennenberg, K. Saito, E. Schnug, I. Stulen (Eds.), Sulfur metabolism in plants. Backhuys publishers, Leiden; Margraf publishers, Weikersheim.
Salmani, A. A., & Fazaelipoor, M. H. (2016). Evaluation of rhamnolipid (RL) as a biosurfactant for the removal of chromium from aqueous solutions by precipitate flotation. Journal of Environmental Management, 165, 184–187.
Article
Google Scholar
Shahandeh, H., & Hossner, L. R. (2000). Enhancement of Cr(III) phytoaccumulation. International Journal of Phytoremediation, 2, 269–286.
CAS
Article
Google Scholar
Shaker, A. K., Djanaguiraman, M., & Venkateswarlu, B. (2009). Chromium in plants: current status and future strategies. Metallomics, 1, 375–383.
Article
Google Scholar
Shanker, A. K., Djanaguiraman, D., Sudhagar, R., Chandrashekar, C. N., & Pathmanabhan, G. (2004). Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R. Wilczek. cv CO4) roots. Plant Science, 166, 1035–1043.
CAS
Article
Google Scholar
Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environmental International, 31, 739–753.
CAS
Article
Google Scholar
Shanker, A. K., Djanaguiraman, M., & Venkateswarlu, B. (2009). Chromium in plants: current status and future strategies. Metallomics, 1, 375–383.
CAS
Article
Google Scholar
Sharma, D. C., Chatterjee, C., & Sharma, C. P. (1995). Chromium accumulation and its effects on wheat (Triticum aestivum L. cv. HD2204) metabolism. Plant Science, 111, 145–151.
CAS
Article
Google Scholar
Silva, S. (1977). Impiego di concimi organici a base di cuoio torrefatto; determinazione delle concentrazioni di cromo nei vegetali e valutazione delle possibilità di inquinamento delle falde freatiche. In Annali della Facoltà di Agraria dell’Università Cattolica del Sacro Cuore, Piacenza, 17, 1–38.
Google Scholar
Skeffington, R. A., Shewry, P. R., & Peterson, P. J. (1976). Chromium uptake and transport in barley seedlings (Hordeum Vulgare L.) Planta, 132, 209–214.
CAS
Article
Google Scholar
Srivastava, S., Srivastava, S., Prakash, S., & Srivastava, M. M. (1998). Fate of trivalent chromium in presence of organic acids. Chemical Speciation and Bioavailability, 10, 147–150.
CAS
Article
Google Scholar
Stollenwerk, K. G., & Grove, D. B. (1985). Adsorption and desorption of hexavalent chromium in an alluvial aquifer near telluride, Colorado. Journal of Environmental Quality, 14, 150–155.
CAS
Article
Google Scholar
U.N.I.C. Unipne Nazionale Industria Conciaria. (2012). Rapporto di Sostenibilità pp.97
U.S.E.P.A U.S. Environmental Protection Agency. (2000). Effluent limitations guidelines, pretreatment standards, commercial hazardous waste combustor subcategory, “Federal Register” 65(18),40 CFR part 423. Washington DC: EPA-Water.
Google Scholar
Wang, J., Pan, K., Giannelis, E. P., & Cao, B. (2013). Polyacrylonitrile/polyaniline core/shell nanofiber mat for removal of hexavalent chromium from aqueous solution: mechanism and applications. RSC Advances, 3, 8978–8987.
CAS
Article
Google Scholar
Vajpayee, P., Rai, U. N., Ali, M. B., Tripathi, R. D., Yadav, V., Sinha, S., & Singh, S. N. (2001). Chromium-induced physiologic changes in Vallisneria spiralis L. and its role in phytoremediation of tannery effluent. Bulletin of Environmental Contamination and Toxicology, 67, 246–256.
CAS
Google Scholar
Vajpayee, P., Rai, U. N., Sinha, S., Tripathi, R. D., & Chandra, P. (1995). Bioremediation of tannery effluent by aquatic macrophytes. Bulletin of Environmental Contamination and Toxicology, 55, 546–553.
CAS
Article
Google Scholar
Vajpayee, P., Sharma, S. C., Tripathi, R. D., Rai, U. N., & Yunus, M. (1999). Bioaccumulation of chromium and toxicity to photosynthetic pigments, nitrate reductase activity and protein content of Nelumbo nucifera Gaertn. Chemosphere, 39, 2159–2169.
CAS
Article
Google Scholar
Vernay, P., Gauthier-Moussard, C., Jean, L., Bordas, F., Faure, O., Ledoigt, G., & Hitmi, A. (2008). Effect of chromium species on phytochemical and physiological parameters in Datura innoxia. Chemosphere, 72, 763–771.
CAS
Article
Google Scholar
Wahaab, R. A., Lubberding, H. J., & Alaerts, G. J. (1995). Copper and chromium (III) uptake by duckweed. Water Science and Technology, 32, 105–110.
Google Scholar
WHO (World Health Organization), Regional Office for Europe (2000). Inorganic pollutants, in air quality guide-lines for Europe, Second Edition, WHO Regional Publications, European Series, N° 91, Copenhagen (pp. 123–135).
Zampella, M., Adamo, P., Laurent, C., Petit, S., Righi, D., & Terribile, F. (2010). Chromium and copper in micromorphological features and clay fractions of volcanic soils with andic properties. Geoderma, 3-4, 185–195.
Article
Google Scholar
Zayed, A., Lytle, C. M., Qian, J. H., & Terry, N. (1998). Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta, 206, 293–299.
CAS
Article
Google Scholar
Zayed, A. M., & Terry, N. (2003). Chromium in the environment: factors affecting biological remediation. Plant and Soil, 249, 139–156.
CAS
Article
Google Scholar
Zeid, I. M. (2001). Responses of Phaseolus vulgaris to chromium and cobalt treatments. Biologia Plantarum, 44, 111–115.
CAS
Article
Google Scholar
Zlatareva, E., Nikolov, N., & Nikolaev, A. (1999). Uptake of Cr(III) by alfalfa depending on pH and the level of pollution of the soil. Pochvoznanie Agrokhimiya Ekologiya, 34, 49–53.
CAS
Google Scholar
Zurayk, R., Sukkariyah, B., & Baalbaki, R. (2001). Common hydrophytes as bioindicators of nickel, chromium and cadmium pollution. Water, Air and Soil Pollution, 127, 373–388.
CAS
Article
Google Scholar