Phytoremediation Potential of Vetiver Grass (Vetiveria zizanioides) for Treatment of Metal-Contaminated Water

Abstract

Phytoremediation using vetiver grass (Vetiveria zizanioides) has been regarded as an effective technique for removing contaminants in polluted water. This study was conducted to assess the removal efficiency of heavy metals (Cu, Fe, Mn, Pb, Zn) using vetiver grass (VG) at different root lengths and densities and to determine metals uptake rate by plant parts (root and shoot) between treatments (low and high concentration). Removal efficiency for heavy metals in water by VG is ranked in the order of Fe>Pb>Cu>Mn>Zn. Results showed that VG was effective in removing all the heavy metals, but removals greatly depend on root length, plant density and metal concentration. Longer root length and higher density showed greater removals of heavy metals due to increased surface area for metal absorption by plant roots. Results also demonstrated significant difference of heavy metals uptake in plant parts at different concentrations indicating that root has high tolerance towards elevated concentration of heavy metals. However, the effects were less significant in plant shoot suggesting that metals uptake were generally higher in root than in shoot. The findings have shown potential of VG in phytoremediation for heavy metals removal in water thus providing significant implication for treatment of metal-contaminated water.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Al-Badaii, F., Othman, M. S., & Gasim, M. B. (2013). Water quality assessment of the Semenyih River, Selangor, Malaysia. Journal of Chemical, 1–10. Article ID 871056, doi:10.1155/2013/871056.

  2. Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals-concepts and applications. Chemosphere, 91, 869–881.

    CAS  Article  Google Scholar 

  3. Appelo, C. A. J., & Postma, D. (1993). Geochemistry, groundwater and pollution. Earth Surface Processes and Landforms, 20(5), 479–480.

    Google Scholar 

  4. Ashraf, M. A., Maah, M. J., & Yusoff, I. (2013). Evaluation of natural phytoremediation process occurring at ex-tin mining catchment. Chiang Mai Journal of Science, 40(2), 198–213.

    CAS  Google Scholar 

  5. Bakar, A. F. A., Yusoff, I., Ng, T. F., Othman, F., & Ashraf, M. A. (2015). Cumulative impacts of dissolved ionic metals on the chemical characteristics of river water affected by alkaline mine drainage from the Kuala Lipis gold mine, Pahang, Malaysia. Chemistry and Ecology, 31(1), 22–33.

    Article  Google Scholar 

  6. Banerjee, R., Goswami, P., Pathak, K., & Mukherjee, A. (2016). Vetiver grass: an environment clean-up tool for heavy metal contaminated iron ore mine-soil. Ecological Engineering, 90, 25–34.

    Article  Google Scholar 

  7. Biswas, A. K., & Tortajada, C. (2011). Water quality management: an introductory framework. International Journal of Water Resources Development, 27(1), 5–11.

    Article  Google Scholar 

  8. Chan, N. W. (2012). Managing urban rivers and water quality in Malaysia for sustainable water resources. Water Resources Development, 28(2), 343–354.

    Article  Google Scholar 

  9. Chomchalow, N. (2003). The role of vetiver in controlling water quantity and treating water quality: an overview with special reference to Thailand. AU J T, 6(3), 145–116.

    Google Scholar 

  10. Danh, L. T., Truong, P., Mammucari, R., Tran, T., & Foster, N. (2009). Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. International Journal of Phytoremediation, 11, 664–691.

    CAS  Article  Google Scholar 

  11. Darajeh, N., Idris, A., Truong, P., Aziz, A. A., Bakar, R. A., & Man, H. C. (2014). Phytoremediation potential of vetiver system technology for improving the quality of palm oil mill effluent. Advances in Materials Science and Engineering, 1–10. Article ID 683579, doi: 10.1155/2014/683579.

  12. Darajeh, N., Idris, A., Masoumi, H. F. R., Nourani, S., Truong, P., & Sairi, N. A. (2016). Modeling BOD and COD removal from palm oil mill secondary effluent in floating wetland by Chrysopogon zizanioides (L.) using response surface methodology. Journal of Environmental Management, 181, 343–352.

    CAS  Article  Google Scholar 

  13. Diami, S. M., Kusin, F. M., & Madzin, Z. (2016). Potential ecological and human health risks of mine-impacted sediments in Pahang, Malaysia. Environmental Science & Pollution Research, 23(20), 21086–21097.

    CAS  Article  Google Scholar 

  14. Fulazzaky, M. A., Seong, T. W., & Masrin, M. I. M. (2010). Assessment of water quality status for the Selangor River in Malaysia. Water, Air, and Soil Pollution, 205, 63–77.

    CAS  Article  Google Scholar 

  15. Gupta, P., Roy, S., & Mahindrakar, A. B. (2012). Treatment of water using water hyacinth, water lettuce and vetiver grass—a review. Resour Environ, 2(5), 202–215.

    Article  Google Scholar 

  16. Hadibarata, T., Abdullah, F., Yusoff, A. R. M., Ismail, R., Azman, S., & Adnan, N. (2012). Correlation study between land use, water quality, and heavy metals (Cd, Pb, and Zn) content in water and green lipped mussels Perna viridis (Linnaeus.) at the Johor Strait. Water, Air, and Soil Pollution, 223, 3125–3136.

    CAS  Article  Google Scholar 

  17. Hatar, H., Rahim, S. A., Razi, W. M., & Sahrani, F. K. (2013). Heavy metals content in acid mine drainage at abandoned and active mining area. AIP Conference Proceedings, 1571, 641–646.

    CAS  Article  Google Scholar 

  18. Jopony, M., & Tongkul, F. (2009). Acid mine drainage at Mamut Copper Mine, Sabah, Malaysia. Borneo Sciences, 3, 83–94.

    Google Scholar 

  19. Kidney S. (1997). Phytoremediation may take root in Brownfields. The Brownfields Report, No. 2(14), 1–6.

  20. Kusin, F. M., Muhammad, S. N., Zahar, M. S. M., & Madzin, Z. (2016a). Integrated River Basin Management: incorporating the use of abandoned mining pool and implication on water quality status. Desalination and Water Treatment, 57(60), 29126–29136.

    Article  Google Scholar 

  21. Kusin, F. M., Zahar, M. S. M., Muhammad, S. N., Mohamad, N. D., Zin, Z. M., & Sharif, S. M. (2016b). Hybrid off-river augmentation system as an alternative raw water resource: the hydrogeochemistry of abandoned mining ponds. Environment and Earth Science, 75(3), 230 1-15.

    Article  Google Scholar 

  22. Kusin, F. M., Rahman, M. S. A., Madzin, Z., Jusop, S., Mohamat-Yusuff, F., Ariffin, M., & Zahar, M. S. M. (2017). The occurrence and potential ecological risk assessment of bauxite mine-impacted water and sediments in Kuantan, Pahang, Malaysia. Environmental Science & Pollution Research, 24(2), 1306–1321.

    CAS  Article  Google Scholar 

  23. Ladislas, S., Gérente, C., Chazarenc, F., Brisson, J., & Andrès, Y. (2013). Performances of two macrophytes species in floating treatment wetlands for cadmium, nickel, and zinc removal from urban stormwater runoff. Water, Air, and Soil Pollution, 224, 1408.

    Article  Google Scholar 

  24. Ling, T. Y., Kho, C. P., & Lee, N. (2012). Spatial and temporal variations of heavy metals in a Tropical River. World Applied Sciences Journal, 16(4), 550–559.

    CAS  Google Scholar 

  25. McCauley, A. (2011). Plant nutrient functions and deficiency and toxicity symptoms. Nutrient Management Module, 9, 4449.

    Google Scholar 

  26. Muhammad, S. N., Kusin, F. M., Zahar, M. S. M., Halimoon, N., & Yusuf, F. M. (2015). Passive treatment of acid mine drainage using mixed substrates: batch experiments. Procedia Environmental Sciences, 30, 157–161.

    CAS  Article  Google Scholar 

  27. Othman, F., Eldin, M. E. A., & Mohamed, I. (2012). Trend analysis of a tropical urban river water quality in Malaysia. Journal of Environmental Monitoring, 14, 3164–3173.

    CAS  Article  Google Scholar 

  28. Rai, P. K. (2008). Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach. International Journal of Phytoremediation, 10(2), 133–160.

    CAS  Article  Google Scholar 

  29. Raskin, I., Smith, R. D., & Salt, D. E. (1997). Phytoremediation of metals: using plants to remove pollutants from the environment. Current Opinion in Biotechnology, 8, 221–226.

    CAS  Article  Google Scholar 

  30. Roongtanakiat, N., & Chairoj, P. (2001). Uptake potential of some heavy metals by vetiver grass. Kasersart J (Nat Sci), 3, 46–50.

    Google Scholar 

  31. Roongtanakiat, N., Tangruangkiat, S., & Meesat, R. (2007). Utilization of vetiver grass (Vetiveria zizanioides) for removal of heavy metals from industrial wastewaters. Science Asia, 33, 397–403.

    CAS  Article  Google Scholar 

  32. Salt, D. E., Blaylock, M., Kumar, N. P. B. A., Dushenkov, V., Ensley, B. D., Chet, I., & Raskin, I. (1995). Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13, 468–174.

    CAS  Article  Google Scholar 

  33. Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 643–668.

    CAS  Article  Google Scholar 

  34. Shazili, N. A. M., Yunus, K., Ahmad, S. A., Abdullah, N., & Rashid, M. K. A. (2006). Heavy metal pollution status in the Malaysian aquatic environment. Aquatic Ecosystem Health & Management, 9(2), 137–145.

    CAS  Article  Google Scholar 

  35. Shu, W. S. (2003). Exploring the potential utilization of vetiver in treating acid mine drainage (AMD). Third international vetiver conference 2003. University of Guangzhou, China. Oct 6.

  36. Shu, W., & Xia, H. (2003). Integrated vetiver technique for remediation of heavy metal contamination: potential and practice. Third international vetiver conference 2003. University of Guangzhou, China. Oct 6.

  37. Shu, W. S., Xia, H. P., Zhang, Z. Q., Lan, C. Y., & Wong, M. H. (2002). Use of vetiver and three other grasses for revegetation of Pb/Zn mine tailings: field experiment. International Journal of Phytoremediation, 4(1), 47–57.

    CAS  Article  Google Scholar 

  38. Singh, V., Thakur, L., & Mondal, P. (2015). Removal of lead and chromium from synthetic wastewater using Vetiveria zizanioides. Clean-Soil, Air, Water, 43(4), 538–543.

    CAS  Article  Google Scholar 

  39. Truong, P. (1999) Vetiver grass technology for mine rehabilitation. Tech Bull No. 1999/2. Pacific Rim Vetiver Network, Office of the Royal Development Projects Board, Bangkok

  40. Truong, P. (2000). The global impact of vetiver grass technology on the environment. Presented in proceedings of the second international vetiver conference 2000. Thailand. Jan 18.

  41. Truong, P. (2002). Vetiver grass technology. In M. Maffei (Ed.), Vetiveria the genus Veteveria (pp. 114–132). New York: Taylor & Francis.

    Google Scholar 

  42. Truong, P. N. V., Foong, Y. K., Guthrie, M., & Hung, Y. T. (2010). Phytoremediation of heavy metal contaminated soils and water using vetiver grass. Environmental Bioengineering, 11, 223–275. doi:10.1007/978-1-60327-031-1_8.

    Google Scholar 

  43. Valderrama, A., Tapia, J., Peñailillo, P., & Carvajal, D. E. (2013). Water phytoremediation of cadmium and copper using Azolla filiculoides Lam. in a hydroponic system. Water Environment Journal, 27, 293–300.

    CAS  Google Scholar 

  44. Vargas, C., Pérez-Esteban, J., Escolástico, C., Masaguer, A., & Moliner, A. (2016). Phytoremediation of Cu and Zn by vetiver grass in mine soils amended with humic acids. Environmental Science and Pollution Research, 23, 13521–13530.

    CAS  Article  Google Scholar 

  45. Webb, R. (2009). Vetiver grass—a hedge against erosion. Permaculture Research Institute 4 pp. Retrieved from http://permaculturenews.org.

  46. Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Network Ecology. doi:10.5402/2011/402647.20 pp.

    Google Scholar 

  47. Xia, H., Liu, S., & Ao, H. (2000). A study on purification and uptake of garbage leachate by vetiver grass, pp. 394–406. In Proceedings of the Second International Conference on Vetiver, Thailand. 18–22 January 2000.

  48. Zhang, X., Gao, B., & Xia, H. (2014). Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of bana grass and vetiver grass. Ecotoxicology and Environmental Safety, 106, 102–108.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was funded through a research grant provided by the Humid Tropic Centre (HTC), Department of Irrigation and Drainage (DID), Malaysia. The authors would like to thank Humibox (M) Sdn. Bhd. for supplying the vetiver grass, Environmental Forensics Research Centre (ENFORCE) Laboratory, Faculty of Environmental Studies, Universiti Putra Malaysia for providing necessary facilities and also technical staffs and students for their high commitment and cooperation in conducting the research. We acknowledge the assistance of the facilitators at the UTM-IWA Publication Workshop in March 2016. This has considerably improved the content of the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Faradiella Mohd Kusin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suelee, A.L., Hasan, S.N.M.S., Kusin, F.M. et al. Phytoremediation Potential of Vetiver Grass (Vetiveria zizanioides) for Treatment of Metal-Contaminated Water. Water Air Soil Pollut 228, 158 (2017). https://doi.org/10.1007/s11270-017-3349-x

Download citation

Keywords

  • Vetiver grass
  • Heavy metal
  • Phytoremediation
  • Removal efficiency
  • Contaminated water