Phytostabilization Ability of Baccharis linearis and Its Relation to Properties of a Tailings-Derived Technosol

  • Felipe Menares
  • María A. Carrasco
  • Bernardo González
  • Ignacio Fuentes
  • Manuel Casanova


Spontaneous colonization of mine tailing dams by plants is a potential tool for phytostabilization of such reservoirs. However, the physical and chemical properties of each mine tailings deposit determine the success of natural plant establishment. The plant Baccharis linearis is the main native nanophanerophyte species (evergreen sclerophyllous shrub) that naturally colonizes abandoned copper tailings dams in arid to semiarid north-central Chile. This study compare growth of B. linearis against the physical and chemical properties of a Technosol derived from copper mine tailings. Five sites inside the deposit were selected based on B. linearis vegetation density (VD), at two soil sampling depths under the canopy of adult individuals. Physical and chemical properties of tailings samples and nutrient concentrations in tailings and plants were each determined. Some morphological features of the plants (roots and aerial parts) were also quantified. There were significant differences in soil available water capacity (AW) and relative density (Rd) at different VD. Sites with low AW and high Rd had lower nutrient concentrations and higher Zn content in tailings, decreased infection by arbuscular mycorrhizal fungi, and increased fine root abundance and root hair length in individual plants. In contrast, higher AW, which was positively correlated with fine particles and organic matter content, had a positive effect on vegetation coverage, increased N and P contents in tailings, and increased N contents in leaf tissues, even when available N and P levels in tailings were low. Multiple constraints, such as low AW, N, P, and B contents and high Zn concentrations in the tailings restricted vegetation coverage, but no phenotypic differences were observed between individuals. Thus, in order to promote dense coverage by B. linearis, water retention in these tailings must be improved by increasing colloidal particles (organic and/or inorganic) contents, which have a positive effect on colonization by this species.


Arbuscular mycorrhizal fungi Baccharis linearis Plant–substrate interaction Tailings properties 



This work was funded by the Soil and Engineering Department at the Faculty of Agronomic Sciences of the University of Chile and by the Bioengineering Laboratory at the Faculty of Engineering and Science of Adolfo Ibáñez University. Additional funds from CONICYT (Grant FB 0002-2014) were obtained.


  1. Alday, J. G., Marrs, R. H., & Martínez-Ruiz, C. (2011). Vegetation succession on reclaimed coal wastes in Spain: the influence of soil and environmental factors. Applied Vegetation Science. doi: 10.1111/j.1654-109X.2010.01104.x.Google Scholar
  2. Bashour, I., & Sayegh, A. (2007). Methods of analysis for soils of arid and semi-arid regions. Rome: Food and Agriculture Organization.Google Scholar
  3. Bingham, I., & Robinson, D. (2003). Root growth and development. In B. Thomas, D. Murphy, & B. Murray (Eds.), Encyclopædia of applied plant Sciences (pp. 1115–1123). London: Academic Press.CrossRefGoogle Scholar
  4. Blight, G. (2010). Geotechnical engineering for mine waste storage facilities. London: CRC-Taylor & Francis Group.CrossRefGoogle Scholar
  5. Boateng, E., Dowuona, G. N. N., Nude, P. M., Foli, G., Gyekye, P., & Jafaru, M. (2012). Geochemical assessment of the impact of mine tailings reclamation on the quality of soils at AngloGold concession, Obuasi, Ghana. Research Journal of Environmental and Earth Sciences, 4(4), 466–474.Google Scholar
  6. Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., & Lux, A. (2007). Zinc in plants. New Phytologist. doi: 10.1111/j.1469-8137.2007.01996.x.Google Scholar
  7. Cano-Reséndiz, O., De La Rosa, G., Cruz-Jiménez, G., Gardea-Torresdey, J. L., & Robinson, B. H. (2011). Evaluating the role of vegetation on the transport of contaminants associated with a mine tailing using the Phyto-DSS. Journal of Hazardous Materials. doi: 10.1016/j.jhazmat.2011.02.059.Google Scholar
  8. Chen, B. D., Zhu, Y. G., Duan, J., Xiaoa, X. Y., & Smith, S. E. (2007). Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Enviromental Pollution. doi: 10.1016/j.envpol.2006.04.027.Google Scholar
  9. Chern, E., Tsai, A., & Gunseitan, O. (2007). Deposition of glomalin related soil protein and sequestered toxic metals into watersheds. Environmental Science & Technology. doi: 10.1021/es0628598.Google Scholar
  10. Chiu, K. K., Ye, Z. H., & Wong, M. H. (2006). Growth of Vetiveria zizanioides and Phragmities australis on Pb/Zn and cu mine tailings amended with manure compost and sewage sludge: a greenhouse study. Bioresource Technology. doi: 10.1016/j.biortech.2005.01.038.Google Scholar
  11. Christie, P., Li, X., & Chen, B. (2004). Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant and Soil. doi: 10.1023/B:PLSO.0000035542.79345.1b.Google Scholar
  12. Conesa, H. M., Faz, Á., & Arnaldos, R. (2006). Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Union mining district (SE Spain). Science of the Total Environment. doi: 10.1016/j.scitotenv.2005.12.008.Google Scholar
  13. Cornejo, P., Meier, S., Borie, G., Rillig, M. C., & Borie, F. (2008). Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Science of the Total Environment. doi: 10.1016/j.scitotenv.2008.07.045.Google Scholar
  14. Cuevas, J., Silva, S., León-Lobos, P., & Ginocchio, R. (2013). Nurse effect and herbivory exclusion facilitate plant colonization in abandoned mine tailings storage facilities in north-central Chile. Revista Chilena de Historia Natural. doi: 10.4067/S0716-078X2013000100006.Google Scholar
  15. Das, B. M. (2016). Principles of foundation engineering. Boston: Cengage Learning.Google Scholar
  16. Dimitrova, R., & Yanful, E. (2012). Factors affecting the shear strength of mine tailings/clay mixtures with varying clay content and clay mineralogy. Engineering Geology. doi: 10.1016/j.enggeo.2011.10.013.Google Scholar
  17. Dold, B., & Fontboté, L. (2001). Element cycling and secondary mineralogy in porphyry copper tailings as function of climate, primary mineralogy, and mineral processing. Journal of Geochemical Exploration. doi: 10.1016/S0375-6742(01)00174-1.Google Scholar
  18. Entry, J. A., Rygiewicz, P. T., Watrud, L. S., & Donnelly, P. K. (2002). Influence of adverse soil conditions on the formation and fuction of arbuscular mycorrhizas. Advances in Environmental Research. doi: 10.1016/S1093-0191(01)00109-5.Google Scholar
  19. Estefan, G., Sommer, R., & Ryan, J. (2013). Methods of soil, plant, and water analysis: a manual for the West Asia and North Africa region. Beirut: ICARDA.Google Scholar
  20. Favas, P. J. C., Pratas, J., Gomes, M. E. P., & Cala, V. (2011). Selective chemical extraction of heavy metals in tailings and soils contaminated by mining activity: environmental implications. Journal of Geochemical Exploration. doi: 10.1016/j.gexplo.2011.04.009.Google Scholar
  21. Fitter, A. (2002). Characteristics and functions of root systems. In Y. Waisel, A. Eshel, & U. Kafkafi (Eds.), Plant roots: The hidden half (pp. 15–32). New York: Marcel Dekker Inc..CrossRefGoogle Scholar
  22. Ghorbani, M., Khara, J., & Abbaspour, N. (2012). Effects of season and soil conditions on the mycorrhizal status and colonization of seven grass species. Iranian Journal of Plant Physiology, 2(2), 387–393.Google Scholar
  23. Giasson, P., Karam, A., & Jaouich, A. (2008). Arbuscular mycorrhizae and alleviation of soil stresses on plant growth. In Z. Siddiqui, M. Akhtar, & K. Futai (Eds.), Mycorrhizae: Sustainable Agriculture and forestry (pp. 99–134). Dordrecht: Springer.CrossRefGoogle Scholar
  24. Ginocchio, R., Bustamante, E., Silva, Y., De La Fuente, L. M., Cuevas, J. G., Jiménez, I., León-Lobos, P., Gazitúa, C., & González, B. (2008). The potential of Baccharis linearis (R. et P.) Pers. for phytostabilization of abandoned copper mine tailing storage facilities under semiarid Mediterranean climate type conditions. Proceedings of the V SETAC World congress. Canberra: Society of Environmental Toxicology and Chemistry.Google Scholar
  25. Giovannetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytologist. doi: 10.1111/j.1469-8137.1980.tb04556.x.Google Scholar
  26. Goldberg, S., & Su, C. (2007). New advances in boron soil chemistry. In F. Xu, H. Goldbach, P. H. Brown, R. W. Bell, T. Fujiwara, C. D. Hunt, S. Goldberg, & L. Shi (Eds.), Advances in Plant and Animal Boron Nutrition (pp. 313–330). Dordrecht: Springer.CrossRefGoogle Scholar
  27. González-Chávez, M., Carrillo-González, R., & Gutiérrez-Castorena, M. (2009). Natural attenuation in a slag heap contaminated with cadmium: the role of plants and arbuscular mycorrhizal fungi. Journal of Hazardous Materials. doi: 10.1016/j.jhazmat.2008.04.110.Google Scholar
  28. González-Chávez, M., Carrillo-González, R., Wright, S., & Nichols, K. A. (2004). The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution. doi: 10.1016/j.envpol.2004.01.004.Google Scholar
  29. Gryndler, M., Vejsadová, H., & Vančura, V. (1992). The effect of magnesium ions on the vesicular-arbuscular mycorrhizal infection of maize roots. New Phytologist. doi: 10.1111/j.1469-8137.1992.tb00073.x.Google Scholar
  30. Gucwa-Przepióra, E., Malkowski, E., Sas-Nowosielska, A., Kucharski, R., Krzyzak, J., Kita, A., & Römkens, P. F. M. A. (2007). Effect of chemophytostabilization practices on arbuscular mycorrhiza colonization of Deschampsia cespitosa ecotype Warynski at different soil depths. Environmental Pollution. doi: 10.1016/j.envpol.2007.01.024.Google Scholar
  31. Hazelton, P., & Murphy, B. (2007). Interpreting soil test results. What do all the numbers mean? Victoria: CSIRO Publishing.Google Scholar
  32. Hettiarachchi, G., & Gupta, U. (2008). Boron, molybdenum, and selenium. In M. Carter & E. Gregorich (Eds.), Soil sampling and methods of analysis (pp. 131–144). Boca Raton: Taylor & Francis Group-CRC Press.Google Scholar
  33. Hinsinger, P., Bengough, A. G., Vetterlein, D., & Young, I. (2009). Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant and Soil. doi: 10.1007/s11104-008-9885-9.Google Scholar
  34. Hossner, L. R., & Shahandeh, H. (2006). Rehabilitation of minerals processing residue (tailings). In R. Lal (Ed.), Encyclopedia of Soil Science (pp. 1450–1455). Boca Raton: CRC Press-Taylor & Francis.Google Scholar
  35. Huang, L., Baumgartl, T., & Mulligan, D. (2012). Is rhizosphere remediation sufficient for sustainable revegetation of mine tailings? Annals of Botany. doi: 10.1093/aob/mcs115.Google Scholar
  36. Iglesia, R., Castro, D., Ginocchio, R., van der Lelie, D., & González, B. (2006). Factors influencing the composition of bacterial communities found at abandoned copper-tailings dumps. Journal of Applied Microbiology. doi: 10.1111/j.1365-2672.2005.02793.x.Google Scholar
  37. IUSS Working Group WRB. (2015). World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  38. Jones, J. B. (2003). Agronomic handbook: management of crops, soils, and their fertility. Boca Raton: CRC Press LLC.Google Scholar
  39. Kabata-Pendias, A. (2011). Trace elements in soils and plants. Boca Raton: Taylor and Francis-CRC Press.Google Scholar
  40. Knappett, J. A., & Craig, R. F. (2012). Craig’s soil mechanics. New York: Spon Press.Google Scholar
  41. Kopsell, D. A., Kopsell, D. E., & Hamlin, R. L. (2015). Molybdenum. In A. Barker & D. Pilbeam (Eds.), Handbook of plant Nutrition (pp. 487–510). Boca Raton: Taylor and Francis-CRC Press.Google Scholar
  42. Koske, R., & Gemma, J. (1989). A modified procedure for staining roots to detect VA mycorrhiza. Mycological Research. doi: 10.1016/S0953-7562(89)80195-9.Google Scholar
  43. Li, M. (2006). Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: a review of research and practice. Science of the Total Environment. doi:  10.1016/j.scitotenv.2005.05.003.
  44. Liao, M., Palta, J., & Fillery, I. (2006). Root characteristics of vigorous wheat improve early nitrogen uptake. Australian Journal of Agricultural Research. doi: 10.1071/AR05439.Google Scholar
  45. Mendez, M. O., & Maier, R. M. (2008). Phytoremediation of mine tailings in temperate and arid environments. Reviews in Environmental Science and Bio/Technology. doi: 10.1007/s11157-007-9125-4.Google Scholar
  46. Montecinos, S., Gutierrez, J. R., & Lopéz-Cortés, F. (2016). Climatic characteristics of the semi-arid Coquimbo region in Chile. Journal of Arid Environments. doi: 10.1016/j.jaridenv.2015.09.018.Google Scholar
  47. Novero, M., Genre, A., Szczyglowski, K., & Bonfante, P. (2009). Root hair colonization by mycorrhizal fungi. In A. M. C. Emons & T. Ketelaar (Eds.), Root hairs (pp. 315–338). Heidelberg: Springer.CrossRefGoogle Scholar
  48. Paliewicz, C. C., Sirbescu, M., Sulatycky, T., & van Hees, E. H. (2015). Environmentally hazardous boron in gold mine tailings, Timmins, Ontario, Canada. Mine Water and the Environment. doi: 10.1007/s10230-014-0284-6.Google Scholar
  49. Paradelo, R., Moldes, A., & Barral, M. (2008). Characterization of slate processing fines according to parameters of relevance for mine spoil reclamation. Applied Clay Science. doi: 10.1016/j.clay.2007.10.009.Google Scholar
  50. Parraga-Aguado, I., González-Alcaraz, M. N., Alvarez-Rogel, J., Jimenez-Carceles, F. J., & Conesa, H. M. (2013). The importance of edaphic niches and pioneer plant species succession for the phytomanagement of mine tailings. Environmental Pollution. doi: 10.1016/j.envpol.2013.01.023.Google Scholar
  51. Peth, S., Horn, R., & Fazekas, O. (2006). Heavy soil loading its consequence for soil structure, strength, deformation of arable soils. Journal of Plant Nutrition and Soil Science. doi: 10.1002/jpln.200620112.Google Scholar
  52. Pizarro, R., Valdés, R., García-Chevesich, P., Vallejos, C., Sangüesa, C., Morales, C., Balocchi, F., Abarza, F., & Fuentes, R. (2012). Latitudinal analysis of rainfall intensity and mean annual precipitation in Chile. Chilean Journal of Agricultural Research. doi: 10.4067/S0718-58392012000200014.Google Scholar
  53. Qiu, Y., & Sego, D. (2001). Laboratory properties of mine tailings. Canadian Geotechnical Journal. doi: 10.1139/t00-082.Google Scholar
  54. Recio-Vazquez, L., Garcia-Guinea, J., Carral, P., Alvarez, A. M., & Garrido, F. (2011). Arsenic mining waste in the catchment area of the Madrid Detrital aquifer (Spain). Water, Air & Soil Pollution, doi. doi: 10.1007/s11270-010-0425-x.Google Scholar
  55. Sadzawka, A., Carrasco, M., Demanet, R., Flores, H., Grez, R., Mora, M., & Neaman, A. (2007). Methods of vegetal tissue analyses. Institute of Agricultural Research of Chile. Accessed 15 July 2016.
  56. Sadzawka, A., Carrasco, M., Grez, R., Mora, M., Flores, H., Neaman, A. (2006). Methods of analysis recommended for soils of Chile. Institute of Agricultural Research of Chile. Accessed 5 July 2016.
  57. Sandoval, M., Dörner, J., Seguel, O., Cuevas, J., & Rivera, D. (2012). Methods of soil physical analyses. [in Spanish]. Chillán: Universidad de Concepción.Google Scholar
  58. Santibáñez, C., Verdugo, C., & Ginocchio, R. (2008). Phytostabilization of copper mine tailings with biosolids: implications for metal uptake and productivity of Lolium perenne. Science of the Total Environment. doi: 10.1007/s11270-010-0425-x.Google Scholar
  59. Santos, V. L., Muchovej, R. M., Borges, A. C., Neves, J. C. L., & Kasuya, M. C. M. (2001). Vesicular-arbuscular/ecto-mycorrhiza succession in seedlings of Eucalyptus spp. Brazilian Journal of Microbiology, 32, 81–86. doi: 10.1590/S1517-83822001000200002.CrossRefGoogle Scholar
  60. Senesi, N., & Loffredo, E. (2005). Interactions with metals (organic matter). In D. Hillel, J. L. Hatfield, D. S. Powlson, M. J. Singer, C. Rosenzweig, & D. L. Sparks (Eds.), Encyclopedia of Soils in the Environment (pp. 101–112). New York: Academic Press.CrossRefGoogle Scholar
  61. SERNAGEOMIN. (2015). Catastro de depósitos de relaves en Chile. Santiago: Servicio Nacional de Geología y Minería, Ministerio de Minería Available (2016 Jul 21): Scholar
  62. Shu, W. S., Ye, Z. H., Lan, C. Y., Zhang, Z. Q., & Wong, M. H. (2002). Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon. Environmental Pollution. doi: 10.1016/S0269-7491(02)00110-0.Google Scholar
  63. Simpson, M., Aravena, E., & Deverell, J. (2014). The future of mining in Chile. Sydney: CSIRO.Google Scholar
  64. Spitz, K., & Trudinger, J. (2008). Mining and the environment. From ore to metal. Boca Raton: CRC Press- Taylor & Francis Group, LLC.CrossRefGoogle Scholar
  65. Stjernman Forsberg, L., & Ledin, S. (2003). Effects of iron precipitation and organic amendments on porosity and penetrability in sulphide mine tailings. Water, Air, & Soil Pollution, doi. doi: 10.1023/A:1022036317408.Google Scholar
  66. Tsay, Y., Ho, C., & Chen, H. (2011). Integration of nitrogen and potassium signalling. Annual Review of Plant Biology. doi: 10.1146/annurev-arplant-042110-103837.Google Scholar
  67. Turnlund, J., & Friberg, L. (2007). Molybdenum. In G. Nordberg, A. Fowler, M. Nordberg, & L. Friberg (Eds.), Handbook on the toxicology of metals (pp. 731–741). Amsterdam: Academic Press.CrossRefGoogle Scholar
  68. Veresoglou, S., & Halley, J. (2012). A model that explains diversity patterns of arbuscular mycorrhizas. Ecological Modelling. doi: 10.1016/j.ecolmodel.2012.01.026.Google Scholar
  69. Vodnik, D., Grčman, H., Maček, I., van Elteren, J. T., & Kovačevič, M. (2008). The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Science of the Total Environment. doi: 10.1016/j.scitotenv.2007.11.016.Google Scholar
  70. Vogel, H., & Kasper, B. (2002). Mine soils on abandoned gold mine tailings in Francistown. Report by the Bundesanstalt für Geowissenschaften und Rohstoffe and Department of Geological Survey (Environmental Geology Division). Lobatse, Botswana.Google Scholar
  71. Wang, X., Liu, Y., Zeng, G., Chai, L., Xiao, X., Song, X., & Min, Z. (2008). Pedological characteristics of Mn mine tailings and metal accumulation by native plants. Chemosphere. doi: 10.1016/j.chemosphere.2008.05.001.Google Scholar
  72. Wills, B. A., & Finch, J. A. (2016). Wills’ mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery. Oxford: Butterworth-Heinemann (Elsevier).Google Scholar
  73. Ye, Z. H., Shu, W. S., Zhang, Z. Q., Lan, C. Y., & Wong, M. (2002). Evaluation of major constraints to revegetation of lead/zinc mine tailings using bioassay techniques. Chemosphere. doi: 10.1016/S0045-6535(02)00054-1.Google Scholar
  74. Young, I. W. R., Naguit, C., Halwas, S. J., Renault, S., & Markham, J. H. (2013). Natural revegetation of a boreal gold mine tailings pond. Restoration Ecology. doi: 10.1111/j.1526-100X.2012.00913.x.Google Scholar
  75. Ziadi, N., Whalen, J. K., Messiga, A. J., & Morel, C. (2013). Assessment and modeling of soil available phosphorus in sustainable cropping systems. Advances in Agronomy. doi: 10.1016/B978-0-12-417187-9.00002-4.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Departamento de Ingeniería y Suelos, Facultad de Ciencias AgronómicasUniversidad de ChileSantiagoChile
  2. 2.Programa de Magíster en Manejo de Suelos y AguasUniversidad de ChileSantiagoChile
  3. 3.Center of Applied Ecology and Sustainability, Facultad de Ingeniería y CienciasUniversidad Adolfo IbáñezSantiagoChile

Personalised recommendations