Skip to main content

Biosorption of Toxic Metals by Water Lettuce (Pistia stratiotes) Biomass

Abstract

Adsorption isotherms were constructed to evaluate the potential use of water lettuce (Pistia stratiotes) dry biomass for the biosorption of zinc and cadmium. One gram of dry biomass of this plant was treated with five increasing doses of zinc (1.8, 18, 50, 79, and 105 mg L−1) and four doses of cadmium (0.01, 0.1, 1, and 10 mg L−1), for nine collection times (1, 3, 6, 12, 24, 36, 48, 60, and 72 h). The levels of these metals were determined by atomic absorption spectrophotometry. To evaluate changes in the surface morphology of the dry biomass, scanning electron microscopy (SEM) images were taken of the samples subjected to the greatest contamination, and these were compared with the images of the samples without zinc and cadmium (control). The ISOFIT software was used to select the isotherm model that best fit the biosorption of metals by water lettuce dry biomass. The linear model was determined to be the best-fitting isotherm model, because it had the lowest corrected Akaike information criterion (AICc) value and a Akaike weight (AICw) value closest to one, which indicates the high affinity of the biosorbent for the adsorbates evaluated. The results for both metals demonstrated greater than 70% reductions in the concentrations of the metals in the contaminated solutions. The SEM images indicated changes in the morphology of the contaminated biomass, thus demonstrating the biosorption mechanisms and confirming the potential of the dry biomass of this plant for use in the remediation of solutions contaminated with zinc and cadmium.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Abreu M. B. de (2013). Preparação de carvão ativado de cana-de-açúcar e sua aplicação na adsorção de Cd (II) e Cu (II). Universidade Tecnológica Federal do Paraná

  • Ahluwalia, S. S., & Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology, 98, 2243–2257. doi:10.1016/j.biortech.2005.12.006.

    Article  CAS  Google Scholar 

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans Automat Contr, 19, 716–723. doi:10.1109/TAC.1974.1100705.

    Article  Google Scholar 

  • Alleoni, L. R. F., Mello, J. W. V., Rocha, W. S. D. (2009). Eletroquímica, adsorção e troca iônica no solo. In: Química e Mineralogia do Solo, Parte II—Aplicações. Sociedade Brasileira de Ciência do Solo, pp 69–130.

  • Bockting, G. J. M., van de Plassche, S. J., Canton, J. H. (1992). Soil-water partition coefficients for some trace metals. RIVM, Rapport 679101003. The Netherlands.

  • Burnham, K. P., & Anderson, D. R. (2004). Model selection and multimodel inference (2nd ed.). New York: Springer New York.

  • Chieng, H. I., Priyantha, N., & Lim, L. B. L. (2015). Effective adsorption of toxic brilliant green from aqueous solution using peat of Brunei Darussalam: isotherms, thermodynamics, kinetics and regeneration studies. RSC Advances, 5, 34603–34615. doi:10.1039/C5RA01572C.

    Article  CAS  Google Scholar 

  • CONSELHO NACIONAL DO MEIO AMBIENTE—CONAMA (2005). Resolução n° 357/2005. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=459. Acessed 26 June 2016

  • Farooq, U., Kozinski, J. A., Khan, M. A., & Athar, M. (2010). Biosorption of heavy metal ions using wheat based biosorbents—a review of the recent literature. Bioresource Technology, 101, 5043–5053. doi:10.1016/j.biortech.2010.02.030.

    Article  CAS  Google Scholar 

  • Fleck, L., Tavares, M. H. F., & Eyng, E. (2013). Adsorbents natural as controllers of aquatic pollutants: a review. Rev EIXO, 2, 39–52.

    Article  Google Scholar 

  • Gonçalves Júnior, A. C., Selzlein, C., & Nacke, H. (2009). Uso de biomassa seca de aguapé (Eichornia crassipes) visando à remoção de metais pesados de soluções contaminadas. Acta Sci Technol, 31, 103–108. doi:10.4025/actascitechnol.v31i1.3166.

    Article  Google Scholar 

  • Jesus, T. B. d., Souza, S. S., Santos, L. T. S. O., & Aguiar, W. M. d. (2015). Evaluation of the potential use of macrophytes as heavy metal accumulator. Rev Virtual Química, 7, 1102–1118. doi:10.5935/1984-6835.20150061.

    Article  Google Scholar 

  • Kelly-Vargas, K., Cerro-Lopez, M., Reyna-Tellez, S., et al. (2012). Biosorption of heavy metals in polluted water, using different waste fruit cortex. Phys Chem Earth, Parts A/B/C, 37–39, 26–29. doi:10.1016/j.pce.2011.03.006.

    Article  Google Scholar 

  • Lacher, C., & Smith, R. W. (2002). Sorption of Hg(II) by Potamogeton natans dead biomass. Minerals Engineering, 15, 187–191. doi:10.1016/S0892-6875(01)00212-6.

    Article  CAS  Google Scholar 

  • Lee, Y.-C., & Chang, S.-P. (2011). The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresource Technology, 102, 5297–5304. doi:10.1016/j.biortech.2010.12.103.

    Article  CAS  Google Scholar 

  • Lucena, G. L., Silva, A. G., Honório, L. M. C., & Santos, V. D. (2012). Cinética de adsorção de cobre (II) utilizando bioadsorventes. Sci Plena, 8, 1–6.

    Google Scholar 

  • Magro, C. D., Deon, M. C., Thomé, A., et al. (2013). Biossorção passiva de cromo (VI) através da microalga Spirulina platensis. Quim Nova, 36, 1139–1145. doi:10.1590/S0100-40422013000800011.

    Article  Google Scholar 

  • Matott, L. S., & Rabideau, A. J. (2008). ISOFIT—a program for fitting sorption isotherms to experimental data. Environ Model Softw, 23, 670–676. doi:10.1016/j.envsoft.2007.08.005.

    Article  Google Scholar 

  • Meurer, E. J., Rhenheimer, D., & Bissani, C. A. (2010). Fenômenos de sorção em solos. In E. J. Meurer (Ed.), Fundamentos de química do solo, 4ª Edição (pp. 108–148). Porto Alegre: Evangraf.

    Google Scholar 

  • Miretzky, P., Saralegui, A., & Fernández Cirelli, A. (2006). Simultaneous heavy metal removal mechanism by dead macrophytes. Chemosphere, 62, 247–254. doi:10.1016/j.chemosphere.2005.05.010.

    Article  CAS  Google Scholar 

  • Módenes, A. N., Pietrobelli, J. M. T. d. A., FRE, Q., et al. (2009). Potencial de biossorção do zinco pela macrófita Egeria densa. Eng Sanit e Ambient, 14, 465–470. doi:10.1590/S1413-41522009000400006.

    Google Scholar 

  • Módenes, A. N., Espinoza-Quiñones, F. R., Lavarda, F. L., et al. (2013). Remoção dos metais pesados Cd(II), Cu(II) e Zn(II) pelo processo de biossorção utilizando a macrófita Eichornia crassipes. REM Rev Esc Minas, 66, 355–362.

    Article  Google Scholar 

  • Mudhoo, A., Garg, V. K., & Wang, S. (2012). Removal of heavy metals by biosorption. Environmental Chemistry Letters, 10, 109–117. doi:10.1007/s10311-011-0342-2.

    Article  CAS  Google Scholar 

  • Murphy, V., Tofail, S. A. M., Hughes, H., & McLoughlin, P. (2009). A novel study of hexavalent chromium detoxification by selected seaweed species using SEM-EDX and XPS analysis. Chemical Engineering Journal, 148, 425–433. doi:10.1016/j.cej.2008.09.029.

    Article  CAS  Google Scholar 

  • Özcan, A. S., & Özcan, A. (2004). Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite. Journal of Colloid and Interface Science, 276, 39–46. doi:10.1016/j.jcis.2004.03.043.

    Article  Google Scholar 

  • Pietrobelli, J. M. T. d. A., Corrêa, A. R., Leichtweis, W. A., et al. (2013). Avaliação da capacidade de remoção dos íons cádmio (ii) e zinco (ii) pela macrófita Egeria densa. Rev Bras Ciências Ambient, 28, 1–9.

    Google Scholar 

  • Pio MC da, S., de Souza K dos, S., & Santana, G. P. (2013). Capacidade da Lemna aequinoctialis para acumular metais pesados de água contaminada. Acta Amaz, 43, 203–210. doi:10.1590/S0044-59672013000200011.

    Article  Google Scholar 

  • Plaza Cazón, J., Viera, M., Donati, E., & Guibal, E. (2013). Zinc and cadmium removal by biosorption on Undaria pinnatifida in batch and continuous processes. Journal of Environmental Management, 129, 423–434. doi:10.1016/j.jenvman.2013.07.011.

    Article  Google Scholar 

  • Pott, V. J., & Pott, A. (2002). Potencial de Uso de Plantas Aquáticas na Despoluição da Água, 1 a edição. Campo Grande: Embrapa Gado de Corte.

    Google Scholar 

  • Rubio, J., Schneider, I. A. H., Ribeiro, T., et al. (2000). Plantas aquáticas: sorventes naturais. Ciência Hoje, 35, 5–8.

    Google Scholar 

  • Schneider, I. A. H., Rubio, J., & Smith, R. W. (2001). Biosorption of metals onto plant biomass: exchange adsorption or surface precipitation? International Journal of Mineral Processing, 62, 111–120. doi:10.1016/S0301-7516(00)00047-8.

    Article  CAS  Google Scholar 

  • Soares, M. R. (2004). Coeficiente de distribuição (Kd) de metais pesados em solos do estado de São Paulo. Dissertation, Universidade de São Paulo.

  • Southichak, B., Nakano, K., Nomura, M., et al. (2006). Phragmites australis: A novel biosorbent for the removal of heavy metals from aqueous solution. Water Research, 40, 2295–2302. doi:10.1016/j.watres.2006.04.027.

    Article  CAS  Google Scholar 

  • Sposito, G. (2008). The chemistry of soils (2nd ed.). New York: Oxford University Press.

  • Staunton, S. (2001). Usefulness and limitations of the distribution coefficient, Kd, in understanding and predicting the fate of trace metals in soil. In Symposium of environmental biogeochemistry (pp. 49–50). Wroclaw: Polish Society of Humic Substances (PTSH).

    Google Scholar 

  • Suñe, N., Sánchez, G., Caffaratti, S., & Maine, M. A. (2007). Cadmium and chromium removal kinetics from solution by two aquatic macrophytes. Environmental Pollution, 145, 467–473. doi:10.1016/j.envpol.2006.04.016.

    Article  Google Scholar 

  • Tagliaferro, G. V., Pereira, P. H. F., Álvares, L., Lúcia, M., & Pinto, C. (2011). Adsorção de chumbo, cádmio e prata em óxido de nióbio (v) hidratado preparado pelo método da precipitação em solução homogênea. Quim Nova, 43, 101–105. doi:10.1590/S0100-40422011000100020.

    Article  Google Scholar 

  • Tavares, SR de L. (2009). Fitorremediação em solo e água de áreas contaminadas por metais pesados provenientes da disposição de resíduos perigosos. Dissertation, Universidade Federal do Rio de Janeiro.

  • Tedesco, J. M., Gianello, C., Bissani, C. A., et al. (1995). Análise de solo, plantas e outros materiais, 2a edição. Porto Alegre

  • UNITED STATES ENVIRONMENTAL PROTECTION AGENCY – USEPA. (1998). Method 3051A—microwave assisted acid digestion of sediments, sludges, soils, and oils (30p). Washington: USEPA.

    Google Scholar 

  • Verma, V. K., Tewari, S., & Rai, J. P. N. (2008). Ion exchange during heavy metal bio-sorption from aqueous solution by dried biomass of macrophytes. Bioresource Technology, 99, 1932–1938. doi:10.1016/j.biortech.2007.03.042.

    Article  CAS  Google Scholar 

  • Vijayaraghavan, K., & Yun, Y.-S. (2008). Bacterial biosorbents and biosorption. Biotechnology Advances, 26, 266–291. doi:10.1016/j.biotechadv.2008.02.002.

    Article  CAS  Google Scholar 

  • Walker, G. M., & Weatherley, L. R. (2001). Adsorption of dyes from aqueous solution—the effect of adsorbent pore size distribution and dye aggregation. Chemical Engineering Journal, 83, 201–206. doi:10.1016/S1385-8947(00)00257-6.

    Article  CAS  Google Scholar 

  • Yeh, T. Y., Lin, C. L., Chen, C. W., & Pan, C. T. (2011). Heavy metal biosorption properties of four harvested macrophytes. J Hazardous, Toxic, Radioact Waste, 15, 108–113. doi:10.1061/(ASCE)HZ.1944-8376.0000080.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Rio de Janeiro State Research Foundation (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica Souto Abreu Lima.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, A.C.D., do Amaral Sobrinho, N.M.B., dos Santos, F.S. et al. Biosorption of Toxic Metals by Water Lettuce (Pistia stratiotes) Biomass. Water Air Soil Pollut 228, 156 (2017). https://doi.org/10.1007/s11270-017-3340-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3340-6

Keywords

  • Macrophyte
  • Remediation
  • Zinc
  • Cadmium
  • Adsorption isotherms