Skip to main content

Advertisement

Log in

The Unquantified Risk of Post-Fire Metal Concentration in Soil: a Review

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Forest fire is a natural disturbance that occurs in many terrestrial ecosystems specifically in the semi-arid environments and is considered to be an important cause of environmental change. Though many causes of fire are identified, including lightning, volcanic eruption, power line sparks, etc., human involvement is the most significant factor. Fire events are able to alter the physical, chemical and biogeochemical properties of the soil and surface materials and are able to release major and trace metals into the environment. This may be more significant in mining-affected and industrial landscapes, where elevated concentrations of metals present in the soil. After the fire event, metals become more mobile due to the increase in soil surface exposure and the mobility associated with ash dispersal. This mobility may increase the bioavailability of the metals, which may generate water quality issues and may contribute to human and environmental health concerns. Even though, the influences of fire on many soil properties are well established, the behaviour of metals with respect to fire is not well investigated. However, a few studies report that major and trace metals include Cd, Cr, Co, Cu, Hg, Mn, Ni, Pb, Zn and As are mobilized after fire with increased concentrations in soil and water resources and this might pose a risk to human health and ecosystems. Climate change may increase the intensity, frequency and areal extend of fire events and hence increase the metal concentrations and their potential health impacts. This paper reviews post-fire (wild fire) mobility of metals in soil common in contaminated forest ecosystems. The human and ecological health risks of these metals are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Adriano, D. C. (1986). Trace elements in the terrestrial environment. New York: Springer-Verlag.

    Book  Google Scholar 

  • Adriano, D. C. (2001). Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals (02nd ed.). New York: Springer-Verlag.

    Book  Google Scholar 

  • ADWG. (2011). Australian Drinking Water Guideline. http://www.nhmrc.gov.au/guidelines-publications/eh52. Accessed 15 Aug 2016.

  • Alkorta, I., Hernández-Allica, J., Becerril, J., Amezaga, I., Albizu, I., & Garbisu, C. (2004). Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Reviews in Environmental Science and Biotechnology, 3(1), 71–90. doi:10.1023/B:RESB.0000040059.70899.3d.

    Article  CAS  Google Scholar 

  • Allen, E. W., Prepas, E. E., Gabos, S., Strachan, W. M., & Zhang, W. (2005). Methyl mercury concentrations in macroinvertebrates and fish from burned and undisturbed lakes on the boreal plain. Canadian Journal of Fisheries and Aquatic Sciences, 62(9), 1963–1977. doi:10.1139/F08-116.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (1995). Heavy metals in soil (02nd ed.). London: Blackie Academic and Professional, Chapman and Hall.

    Book  Google Scholar 

  • Almeida, M. D., Lacerda, L. D., Bastos, W. R., & Herrmann, J. C. (2005). Mercury loss from soils following conversion from forest to pasture in Rondônia, Western Amazon, Brazil. Environmental Pollution, 137, 179–186. doi:10.1016/j.envpol.2005.02.026.

    Article  CAS  Google Scholar 

  • Amirbahman, A., Ruck, P. L., Fernandez, I. J., Haines, T. A., & Kahl, J. S. (2004). The effect of fire on mercury cycling in the soils of forested watersheds: Acadia National Park, Maine, USA. Water Air Soil Pollution, 152, 315–331. doi:10.1023/B:WATE.0000015369. 02804.15.

    Article  Google Scholar 

  • Amiro, B., Sheppard, S., Johnston, F., Evenden, W., & Harris, D. (1996). Burning radionuclide question: what happens to iodine, cesium and chlorine in biomass fires? Science of the Total Environment, 187(2), 93–103. doi:10.1016/0048-9697(96)05125-X.

    Article  CAS  Google Scholar 

  • Andreae, M. O., & Merlet, P. (2001). Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15(4), 955–966. doi:10.1127/1863-9135/2010/0176-0029.

    Article  CAS  Google Scholar 

  • Angelova, V. R., Ivanov, A. S., & Braikov, D. M. (1999). Heavy metals (Pb, Cu, Zn and Cd) in the system soil–grapevine–grape. Journal of the Science of Food and Agriculture, 79(5), 713–721. doi:10.1002/(SICI)1097-0010(199904)79:5<713::AID-JSFA229>3.0.CO;2-F.

    Article  CAS  Google Scholar 

  • ANZECC. (2000). Australian and New Zealand water quality guideline for fresh and marine water quality. Australian and New Zealand Environment and Conservation Council, Canberra. http://www.environment.gov.au/system/files/resources/53cda9ea-7ec2-49d4-af29-d1dde09e96ef/files/nwqms-guidelines-4-vol1.pdf. Accessed 12 Feb 2017.

  • Arocena, J. M., & Opio, C. (2003). Prescribed fire-induced changes in properties of sub-boreal forest soils. Geoderma, 113, 1–16. doi:10.1016/S0016-7061(02)00312-9.

    Article  CAS  Google Scholar 

  • Artaxo, P., Campos de, R. C., Fernandes, E. T., Martins, J. V., Xiao, Z., Lindqvist, O., Fernandes-Jimenez, M. T., & Maenhaut, W. (2000). Large scale mercury and trace element measurements in the Amazon basin. Atmospheric Environment, 34, 4085–4096. doi:10.1016/S1352-2310(00)00106-0.

    Article  CAS  Google Scholar 

  • Athar, M., & Vohora, S. (1995). Heavy metals and environment. New Delhi, India: New Age International.

    Google Scholar 

  • ATSDR. (2005). Agency for Toxic Substance and Disease Registry, Toxicological profile for zinc. US Department of Health and Human Services. http://www.atsdr.cdc.gov/phs/phs.asp?id=300&tid=54. Accessed 17 Jan 2017.

  • ATSDR. (2011a). Agency for Toxic Substance and Disease Registry, Toxicological profile for lead. US Department of Health and Human Services. http://www.atsdr.cdc.gov/ substances/toxsubstance.asp? toxid=22. Accessed 17 Aug 2016.

  • ATSDR. (2011b). Agency for Toxic Substance and Disease Registry, Health effects and exposure to substances and carcinogens. US Department of Health and Human Services. https://www.atsdr.cdc.gov/substances/indexAZ.asp. Accessed 17 Feb 2017.

  • ATSDR. (2012). Agency for Toxic Substance and Disease Registry, Toxicological profile for Mn. US Department of Health and Human Services.https://www.atsdr.cdc.gov/phs/phs.asp?id=100&tid=23. Accessed 17 Feb 2017.

  • ATSDR. (2013). Agency for Toxic Substance and Disease Registry, Toxicological profile for chromium. US Department of Health and Human Services. https://www.atsdr.cdc.gov/csem/csem.asp?csem=10&po=11. Accessed 17 Jan 2017.

  • Auclair, A. N. D. (1977). Factors affecting tissue nutrient concentrations in a Carex medow. Oecologia, 28, 233–246. doi:10.1007/BF00751602.

    Article  Google Scholar 

  • Barbier, O., Jacquillet, G., Tauc, M., Cougnon, M., & Poujeol, P. (2005). Effect of heavy metals on, and handling by, the kidney. Nephron Physiology, 99(4), 105–110. doi:10.1159/000083981.

    Article  CAS  Google Scholar 

  • Barbone, F., Valent, F., Pisa, F., Daris, F., Fajon, V., Gibicar, D., et al. (2004). Prenatal low-level methyl mercury exposure and child development in an Italian coastal area. Seychelles Medical and Dental Journal, 7, 149–154.

    Google Scholar 

  • Beganyi, S. R., & Batzer, D. P. (2011). Wildfire induced changes in aquatic invertebrate communities and mercury bioaccumulation in the Oke Fenokee swamp. Hydrobiologia, 669, 237–247. doi:10.1007/s10750-011-0694-4.

    Article  CAS  Google Scholar 

  • Bento-Goncalves, A., Vieira, A., Ubeda, X., & Martin, D. (2012). Fire and soils: key concepts and recent advances. Geoderma, 191, 3–13. doi:10.1016/j.geoderma. 2012.01.004.

    Article  Google Scholar 

  • Bergvist, B., Folkeson, L., & Berggren, D. (1989). Fluxes of Cu, Zn, Pb, Cd, Cr and Ni in temperate forest ecosystems: a literature review. Water Air & Soil Pollution, 47, 217–286. doi:10.1007/BF00279328.

    Article  Google Scholar 

  • Bernard, A. (2008). Cadmium & its adverse effects on human health. Indian Journal of Medical Research, 128(4), 557.

    CAS  Google Scholar 

  • Biester, H., & Scholz, C. (1996). Determination of mercury binding forms in contaminated soils: mercury pyrolysis versus sequential extractions. Environmental Science & Technology, 31(1), 233–239. doi:10.1021/es960369h.

    Article  Google Scholar 

  • Biester, H., Müller, G., & Schöler, H. (2002). Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants. Science of the Total Environment, 284(1), 191–203. doi:10.1007/s11368-010-0196-4.

    Article  CAS  Google Scholar 

  • Biswas, A., Blum, J. D., Klaue, B., & Keeler, G. J. (2007). Release of mercury from Rocky Mountain forest fires. Global Biogeochemical Cycles, 21, 1–13. doi:10.1029/2006 GB002696.

    Article  CAS  Google Scholar 

  • Biswas, A., Blum, J. D., & Keeler, G. J. (2008). Mercury storage in surface soils in central Washington forest and estimated release during the 2001 Rex Creek fire. Science of the Total Environment, 404, 129–138. doi:10.1016/j.scitotenv.2008.05.043.

    Article  CAS  Google Scholar 

  • Boening, D. W. (2000). Ecological effects, transport, and fate of mercury: a general review. Chemosphere, 40(12), 1335–1351. doi:10.1016/S0045-6535(99)00283-0.

    Article  CAS  Google Scholar 

  • Bogacz, A., Wozniczka, P., & Labaz, B. (2011). Concentration and pools of heavy metals in organic soils in post-fire areas used as forests and meadows. Journal of Elementology, 16(4). doi:10.5601/jelem.2011.16.4.01

  • Bowman, D. M. J. S., Balch, J., Artaxo, P., Bond, W. J., Cochrane, M. A., D’Antonio, C. M., et al. (2011). The human dimension of fire regimes on earth. Journal of Biogeography, 38(12), 2223–2236. doi:10.1111/j.1365-2699.2011.02595.x.

    Article  Google Scholar 

  • Boyd, H. (1971). Manganese toxicity to peanuts in autoclaved soil. Plant and Soil, 35(1), 133–144. doi:10.1007/BF01372638.

    Article  Google Scholar 

  • Boyle, E. A., Bergquist, B. A., Kayser, R. A., & Mahowald, N. (2005). Iron, manganese, and lead at Hawaii Ocean time-series station ALOHA: temporal variability and an intermediate water hydrothermal plume. Geochimica et Cosmochimica Acta, 69(4), 933–952. doi:10.1016/j.gca.2004.07.034.

    Article  CAS  Google Scholar 

  • Bradl, H. B. (2005). Heavy metals in the environment. Germany: Academic Press.

    Google Scholar 

  • Breulmann, G., Markert, B., Weckert, V., Herpin, U., Yoneda, R., & Ogino, K. (2002). Heavy metals in emergent trees and pioneers from tropical forest with special reference to forest fires and local pollution sources in Sarawak, Malaysia. Science of the Total Environment, 285(1), 107–115. doi:10.1016/S0048-9697(01)00899-3.

    Article  CAS  Google Scholar 

  • Brown, I. A., & Austin, D. W. (2012). Maternal transfer of mercury to the developing embryo/ fetus: is there a safe level? Toxicological and Environmental Chemistry, 94(8), 1610–1327. doi:10.1080/02772248.2012724574.

    Article  CAS  Google Scholar 

  • Brown, T. J., Hall, B., & Westerling, A. L. (2004). The impact of twenty- first century climate change on wild land fire danger in the western United States: an applications perspective. Climatic Change, 62(1), 365–388. doi:10.1023/B:CLIM.0000013680. 07783.de.

    Article  Google Scholar 

  • Brunke, E. G., Labuschagne, C., & Slemr, F. (2001). Gaseous mercury emissions from a fire in the Cape Peninsula, South Africa, during January 2000. Geophysical Research Letters, 28, 1483–1486. doi:10.1029/2000GL012193.

    Article  CAS  Google Scholar 

  • Brye, K. R. (2006). Soil physiochemical changes following 12 years of annual burning in a humid–subtropical tallgrass prairie: a hypothesis. Acta Oecologica, 30(3), 407–413. doi:10.1016/S0048-9697(01)00899-3.

    Article  Google Scholar 

  • Burke, M. P., Hogue, T. S., Ferreira, M., Mendez, C. B., Navarro, B., Lopez, S., & Jay, J. A. (2010). The effect of wildfire on soil mercury concentrations in southern California watershed. Water Air & Soil Pollution, 212, 369–385. doi:10.1007/s11270-010-0351-y.

    Article  CAS  Google Scholar 

  • Burke, M. P., Hogue, T. S., Barco, J., Wessel, C., Kinoshita, A. Y., & Stein, E. D. (2013). Pre- and post-fire pollutant loads in an urban fringe watershed in Southern California. Environmental Monitoring and Assessment, 185, 10131–10145. doi:10.1007/s10661-013-3318-9.

    Article  CAS  Google Scholar 

  • Burton, C. A., Hoefen, T. M., Plumlee, G. S., Baumberger, K. L., Backlin, A. R., Gallegos, E., & Fisher, R. N. (2016). Trace elements in stormflow, ash and burned soils following the 2009 station fire in southern California. PloS One, 4, 1–26. doi:10.10371/journal.pone.0153372.

    Google Scholar 

  • Bushey, J. T., Nallana, A. G., Montesdeoca, M. R., & Driscoll, C. T. (2008). Mercury dynamics of a northern hardwood canopy. Atmospheric Environment, 42, 6905–6914. doi:10.1016/j.atmosenv.2008.05.043.

    Article  CAS  Google Scholar 

  • Caldwell, C. A., Canavan, C. M., & Bloom, N. S. (2000). Potential effects of forest fire and storm flow on total mercury and methyl mercury in sediments of an arid-land reservoir. Science of the Total Environment, 260, 125–133. doi:10.1016/S0048-9697(00)00554-4.

    Article  CAS  Google Scholar 

  • Campos, I., Abrantes, N., Vidal, T., Bastos, A., Gonçalves, F., & Keizer, J. (2012). Assessment of the toxicity of ash-loaded runoff from a recently burnt eucalypt plantation. European Journal of Forest Research, 131(6), 1889–1903. doi:10.1007/s10342-012-0640-7.

    Article  Google Scholar 

  • Campos, I., Vale, C., Abrantes, N., Keizer, J. J., & Pereira, P. (2015). Effects of wildfire on mercury mobilization in eucalipt and pine forests. Catena, 131, 149–159. doi:10.1016/j.catena.2015.02.024.

    Article  CAS  Google Scholar 

  • Campos, I., Abrantes, N., Keizer, J. J., Vale, C., & Pereira, P. (2016). Major and trace elements in soil and ashes of eucalypt and pine forest plantations in Portugal following a wildfire. Science of the Total Environment, 572, 1363–1376. doi:10.1016/ j.scitotenv.2016.01.190.

    Article  CAS  Google Scholar 

  • Carlos, G., Colin, T., Janette, M., Jimenez, M., Luz, M., Razo, D., et al. (2014). Urinary arsenic levels influenced by abandoned mine tailings in the Southernmost Baja California Peninsula, Mexico. Environmental Geochemistry and Health, 36, 845–854. doi:10.1007/s10653-014-9603-x.

    Article  CAS  Google Scholar 

  • Castellinou, M., Kraus, D., & Miralles, M. (2010). Prescribed burning and suppression fire techniques: from fuel to landscape management. In Montiel, C. & Kraus, D. (Eds). The Catalonian programme of fire management: GRAF team actions. Spain.

  • CEC. (1986). Commission for the European Communities. Report on the protection of the environment and in particular of soil when sewage sludge issued in agriculture. Official Journal of the European Communities, Belgium. http://ec.europa.eu/environment/waste/sludge/index.htm. Accessed 10 Sep 2016.

  • Celik, I., Gallichio, L., Boyd, K., Lam, T. K., Matanoski, G., Tao, X., et al. (2008). Arsenic in drinking water and lung cancer: a systematic review. Environmental Research, 108, 48–55. doi:10.1016/j.envres.2008.04.001.

    Article  CAS  Google Scholar 

  • Cempel, M., & Nikel, G. (2006). Nickel: a review of its sources and environmental toxicology. Polish Journal of Environmental Studies, 15(3), 375–382.

    CAS  Google Scholar 

  • Centeno, J. A., Tseng, C. H., Van der Voet, G. B., & Finkelman, R. B. (2007). Global impacts of geogenic arsenic: a medical geology research case. Ambio: A Journal of the Human Environment, 36(1), 78–81. doi:10.1579/0044-7447(2007)36[78:GIOGAA]2.0.CO;2.

    Article  CAS  Google Scholar 

  • Cerda, A., & Doerr, S. H. (2008). The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74, 256–263. doi:10.1016/j.catena.2008.03.010.

    Article  Google Scholar 

  • Cerdà, A., & Lasanta, T. (2005). Long-term erosional responses after fire in the Central Spanish Pyrenees: 1. Water and sediment yield. Catena, 60(1), 59–80. doi:10.1016/j.catena.2004.09.006.

    Article  Google Scholar 

  • Certini, G. (2005). Effects of fire on properties of forest soils: a review. Oecologia, 143, 1–10. doi:10.1007/s00442-004-1788-8.

    Article  Google Scholar 

  • Chambers, D., & Attiwill, P. (1994). The ash-bed effect in Eucalyptus regnans forest: chemical, physical and microbiological changes in soil after heating or partial sterilisation. Australian Journal of Botany, 42(6), 739–749. doi:10.1071/BT9940739.

    Article  CAS  Google Scholar 

  • Chen, C. J., Hung-Yi, C., Mng-His, C., Li-Ju, L., & Tong-Yuan, T. (1996). Dose-response relationship between ischemic heart disease and long term arsenic exposure. Arteriosclerosis, Thrombosis, and Vascular Biology, 16, 504–510. doi:10.1161/01.ATV.16.4.504.

    Article  CAS  Google Scholar 

  • Cheng, M.-D., & Schroeder, W. H. (2000). Potential atmospheric transport pathways for mercury measured in the Canadian high arctic. Journal of Atmospheric Chemistry, 35(1), 101–107. doi:10.1023/A:1006259625983.

    Article  CAS  Google Scholar 

  • Chesters, J. K. (1997). Zinc. In B. L. O’Dell & R. A. Sunde (Eds.), Handbook of nutritionally essential mineral elements (pp. 185–213). New York: Marcel Dekker Inc..

    Google Scholar 

  • Chirenje, T., Ma, L. Q., & Lu, L. (2006). Retention of Cd, Cu, Pb and Zn by wood ash, lime and fume dust. Water, Air, & Soil Pollution, 171(1), 301–314. doi:10.1007/s11270-005-9051-4.

    Article  CAS  Google Scholar 

  • Chiu, K. K., Ye, Z. H., & Wong, M. H. (2006). Growth of Vetiveria zizanioides and phragmities australis on Pb/Zn and Cu mine tailings amended with manure compost and sewage sludge: a greenhouse study. Bioresources Technology, 97, 158–170. doi:10.1016/j.biortech.2005.01.038.

    Article  CAS  Google Scholar 

  • Chlopecka, A., Bacon, J., Wilson, M., & Kay, J. (1996). Forms of cadmium, lead, and zinc in contaminated soils from Southwest Poland. Journal of Environmental Quality, 25(1), 69–79. doi:10.2134/jeq1996.00472425002500010009x.

    Article  CAS  Google Scholar 

  • Chuvieco, E., Justice, C., & Giglio, L. (2008). Global characterization of fire activity: toward defining fire regimes from earth observation data. Global Change Biology, 14(7), 1488–1502. doi:10.1111/j.1365-2486.2008.01585.x.

    Article  Google Scholar 

  • Cobbina, S. J., Dogben, J. Z., Obiri, S., & Tom-Derry, D. (2011). Assessment of non-cancerous health risk from exposure to Hg, As and Cd by resident children and adults in Nangodi in the upper east region, Ghana. Water Quality Exposure and Health, 3(3), 225–232. doi:10.1007/s12403-012-0059-x.

    Article  CAS  Google Scholar 

  • Cobbina, S. J., Myilla, M., & Michael, K. (2013). Small scale gold mining and heavy metal pollution: assessment of drinking water sources in Datuku in the Talensi-Nabdam district. International Journal of Science and Technology Research, 2(1), 96–100.

    Google Scholar 

  • Cohen, A. S., Palacios Fest, M. R., McGill, J., Swarzenski, P. W., Verschuren, D., Sinyinza, R., et al. (2005). Palaeolimnological investigations of anthropogenic environmental change in Lake Tanganyika. An introduction to the project. Journal of Palaeolimnology, 34, 1–18. doi:10.1007/s10933-005-2392-6.

    Article  Google Scholar 

  • Coronado-Gonzalez, J. A., Del Razo, L. M., Garcia-Vargas, G., Sanmiguel-Salaar, F., & La Pena, J. E. (2007). Inorganic arsenic exposure and type 2 diabetes mellitus in Mexico. Environmental Research, 104, 383–389. doi:10.1016/j.envres.2007.03.004.

    Article  CAS  Google Scholar 

  • Costa, M., & Klein, C. B. (2006). Toxicity and carcinogenicity of chromium compounds in humans. Critical Reviews in Toxicology, 36(2), 155–163. doi:10.1080/10408440500534032.

    Article  CAS  Google Scholar 

  • Costa, M. R., Calvão, A. R., & Aranha, J. (2014). Linking wildfire effects on soil and water chemistry of the Marão River watershed, Portugal, and biomass changes detected from Landsat imagery. Applied Geochemistry, 44, 93–102. doi:10.1016/j.apgeochem. 2013.09.009.

    Article  CAS  Google Scholar 

  • Crossgrove, J., & Zheng, W. (2004). Manganese toxicity upon overexposure. NMR in Biomedicine, 17(8), 544–553. doi:10.1002/nbm.931.

    Article  CAS  Google Scholar 

  • Crump, K. S., Kjellström, T., Shipp, A. M., Silvers, A., & Stewart, A. (1998). Influence of prenatal mercury exposure upon scholastic and psychological test performance: benchmark analysis of a New Zealand cohort. Risk Analysis, 18(6), 701–713. doi:10.1023/B:RIAN.0000005917.52151.e6.

    Article  CAS  Google Scholar 

  • Das, K., Das, S., & Dhundasi, S. (2008). Nickel, its adverse health effects & oxidative stress. Indian Journal of Medical Research, 128(4), 412–425.

    CAS  Google Scholar 

  • DeBano, L. F. (2000). The role of the fire and soil heating on water repellency in wildland environments: a review. Journal of Hydrology, 231-232, 195–206. doi:10.1016/ S0022-1694(00)00194-3.

    Article  Google Scholar 

  • DeBano, L. F., Neary, D. G., & Folliott, P. F. (1998). Fire effects on ecosystems. New York: John Wiley & Sons.

    Google Scholar 

  • Del Razo, L. M., Garcia-Vargas, G. G., Valenzuela, O. L., Castellanos, E. H., Sanchez-Pena, L. C., Currier, J. M., Drobna, Z., Loomis, D., & Styblo, M. (2011). Exposure to arsenic in drinking water is associated with increased prevalence of diabetes. A cross sectional study in the Zimapan and Lagunera regions in Mexico. Environmental Health, 10(73), 1–11. doi:10.1186/1476-069X-10-73.

    Google Scholar 

  • De Marco, A., Gentile, A. E., Arena, C., & De Santo, A. V. (2005). Organic matter, nutrient content and biological activity in burned and unburned soils of a Mediterranean maquis area of southern Italy. International Journal of Wildland Fire, 14(4), 365–377. doi:10.1071/WF05030.

    Article  CAS  Google Scholar 

  • De-Szalay, F. A., & Resh, V. H. (1997). Responses of wetland invertebrates and plants important in waterfowl diets to burning and mowing of emergent vegetation. Wetlands, 17(1), 149–156. doi:10.1007/BF03160726.

    Article  Google Scholar 

  • Doerr, S., Cerdà, A., & Bryant, R. (2008). The role of ash in carbon fluxes in fire affected environments. Geophysical Research Abstracts, 10, EGU2008-A-06555, 2008 SRef-ID: 1607–7962/gra/EGU2008-A-06555.

  • Dore, S., Kolb, T., Montes-Helu, M., Eckert, S., Sullivan, B., Hungate, B., et al. (2010). Carbon and water fluxes from ponderosa pine forests disturbed by wildfire and thinning. Ecological Applications, 20(3), 663–683. doi:10.1890/09-0934.1.

    Article  CAS  Google Scholar 

  • Drever, J. I. (1988). The geochemistry of natural waters (02nd ed.). New Jersey, USA: Prentice Hall.

    Google Scholar 

  • Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., & Pirrone, N. (2013). Mercury as a global pollutant: sources, pathways, and effects. Environmental science & technology, 47(10), 4967–4983. doi:10.1021/es305071v.

  • Dunlap, C., Alpers, C. N., Bouse, R., Taylor, H., Unruh, D., & Flegal, A. (2008). The persistence of lead from past gasoline emissions and mining drainage in a large riparian system: evidence from lead isotopes in the Sacramento River, California. Geochimica et Cosmochimica Acta, 72(24), 5935–5948. doi:10.1016/j.gca.2008.10.006.

    Article  CAS  Google Scholar 

  • Dzwonko, Z., Loster, S., & Gawronski, S. (2015). Impact of fire severity on soil properties and the development of tree and shrub species in a Scots pine moist forest site in southern Poland. Forest Ecology and Management, 342, 56–63. doi:10.1016/ j.foreco.2015.01.013.

    Article  Google Scholar 

  • Engle, M. A., Gustin, M. S., Johnson, D., Murphy, J. F., Miller, W. W., Walker, R. F., Wright, J., & Markee, M. (2006). Mercury distribution in two Sierran forest and one desert sagebrush steppe ecosystems and the effects of fire. Science of the Total Environment, 367, 222–233. doi:10.1016/j.scitotenv.2005.11.025.

    Article  CAS  Google Scholar 

  • EPA. (1996). Soil screening guideline (IInd edition): Users guidance, Environmental Protection Agency, USA. http://rais.ornl.gov/documents/SSG_nonrad_user.pdf. Accessed 20 Sep 2016.

  • EPA. (1997). Mercury study report to Congress: summary. Environmental Protection agency, USA. https://www.epa.gov/mercury/mercury-study-report-congress. Accessed 27 Sep 2016.

  • EPA. (2002). Clean water act Federal water pollution control act, criteria for priority toxic pollutants, Environmental Protection Agency, USA. https://www.epa.gov/eg/toxic-and-priority-pollutants-under-clean-water-act. Accessed 12 Oct 2016.

  • Ephraim, J. H. (1992). Heterogeneity as a concept in the interpretation of metal ion binding by humic substances. The binding of zinc by an aquatic fulvic acid. Analytica Chimica Acta, 267, 39–45. doi:10.1016/0003-2670(92)85004-P.

    Article  CAS  Google Scholar 

  • Ericksen, J., Gustin, M., Schorran, D., Johnson, D., Lindberg, S., & Coleman, J. (2003). Accumulation of atmospheric mercury in forest foliage. Atmospheric Environment, 37(12), 1613–1622. doi:10.1016/S1352-2310(03)00008-6.

    Article  CAS  Google Scholar 

  • Etiegni, L., & Campbell, A. (1991). Physical and chemical characteristics of wood ash. Bioresource Technology, 37(2), 173–178. doi:10.1016/0960-8524(91)90207-Z.

    Article  CAS  Google Scholar 

  • FAO. (2001). Global Forest Fire Assessment 1990–2000, Food and Agricultural Organization, United Nations, Forestry Department, Forest Resources Assessment Programme Working paper 55, Rome.

  • Fay, L., & Gustin, M. (2007). Assessing the influence of different atmospheric and soil mercury concentrations on foliar mercury concentrations in a controlled environment. Water, Air, & Soil Pollution, 181, 373–384. doi:10.1007/s11270-006-9308-6.

    Article  CAS  Google Scholar 

  • Ferreira, A., Coelho, C., Boulet, A., & Lopes, F. (2005). Temporal patterns of solute loss following wildfires in Central Portugal. International Journal of Wildland Fire, 14(4), 401–412. doi:10.1071/WF05043.

    Article  CAS  Google Scholar 

  • Fewtrell, L., Prüss-Üstün, A., Landrigan, P., & Ayuso-Mateos, J. (2004). Estimating the global burden of disease of mild mental retardation and cardiovascular diseases from environmental lead exposure. Environmental Research, 94(2), 120–133. doi:10.1016/S0013-9351(03)00132-4.

    Article  CAS  Google Scholar 

  • Finley, B., Swartzendruber, P., & Jaffe, D. (2009). Particulate mercury emissions in regional wildfire plumes observed at the Mount Bachelor Observatory. Atmospheric Environment, 43, 6074–6083. doi:10.1016/j.atmosenv.2009.08.046.

    Article  CAS  Google Scholar 

  • Flannigan, M. D., Bergeron, Y., Engelmark, O., & Wotton, B. M. (1998). Future wildfire in circumboreal forests in relation to global warming. Journal of Vegetation Science, 9(4), 469–476 http://www.jstor.org/stable/3237261. Accessed 10 Oct 2016.

    Article  Google Scholar 

  • Flannigan, M. D., & Wotton, B. M. (2001). Climate, weather, and area burned. In E. A. Johnson & K. Miyanishi (Eds.), Forest fires: behavior and ecological effects (pp. 351–373). San Diego, CA, USA: Academic Press.

    Chapter  Google Scholar 

  • Foy, B. D., Wiedinmyer, C., & Schauer, J. (2012). Estimation of mercury emissions from forest fires, lakes, regional and local sources using measurements in Milwaukee and an inverse method. Atmospheric Chemistry and Physics, 12, 8993–9011. doi:10.5194/ acp-12-8993-2012, 2012.

    Article  CAS  Google Scholar 

  • Frescholtz, T. F., Gustin, M. S., Schorran, D. E., & Fernandez, G. C. (2003). Assessing the source of mercury in foliar tissue of quaking aspen. Environmental Toxicology and Chemistry, 22(9), 2114–2119. doi:10.1002/etc.5620220922.

    Article  CAS  Google Scholar 

  • Frey, B., Stemmer, M., Widmer, F., Luster, J., & Sperisen, C. (2006). Microbial activity and community structure of a soil after heavy metal contamination in a model forest ecosystem. Soil Biology and Biochemistry, 38(7), 1745–1756. doi:10.2134/jeq1996.00472425002500010009x.

    Article  CAS  Google Scholar 

  • Fried, J. S., Torn, M. S., & Mills, E. (2004). The impact of climate change on wildfire severity: a regional forecast for northern California. Climatic Change, 64(1), 169–191. doi:10.1023/B:CLIM.0000024667.89579.ed.

    Article  Google Scholar 

  • Friedli, H. R., Radke, L. F., & Lu, J. Y. (2001). Smoke from biomass fires. Geophysical Research Letters, 28, 3223–3226. doi:10.1029/2000GL012704.

    Article  CAS  Google Scholar 

  • Friedli, H., Radke, L., Lu, J., Banic, C., Leaitch, W., & MacPherson, J. (2003). Mercury emissions from burning of biomass from temperate North American forests: laboratory and airborne measurements. Atmospheric Environment, 37, 253–267. doi:10.1016/S1352-2310(02)00819-1.

    Article  CAS  Google Scholar 

  • Friedli, H. R., Arellano, A. F., Cinnirella, S., & Pirrone, N. (2009). Initial estimates of mercury emissions to the atmosphere from global biomass burning. Environmental Science and Technology, 43(10), 3507–3513. doi:10.1021/es802703g.

    Article  CAS  Google Scholar 

  • Gadd, G. M. (2004). Microbial influence on metal mobility and application for bioremediation. Geoderma, 122(2), 109–119. doi:10.1016/j.geoderma.2004.01.002.

    Article  CAS  Google Scholar 

  • Gadd, G. M. (2007). Transformation and mobilization of metals, metalloids, and radionuclides by microorganisms. In A. Violente, P. M. Huang, & G. M. Gadd (Eds.), Biophysico-chemical processes of heavy metals and metalloids in soil environments (Vol 1) (pp. 53–96). New York: John Wiley & Sons.

    Chapter  Google Scholar 

  • Garcia, E., & Carignan, R. (2005). Mercury concentrations in fish from forest harvesting and fire-impacted Canadian boreal lakes compared using stable isotopes of nitrogen. Environmental Toxicology and Chemistry, 24, 685–693. doi:10.1897/04-065R.1.

    Article  CAS  Google Scholar 

  • García-Marco, S., & González-Prieto, S. (2008). Short-and medium-term effects of fire and fire-fighting chemicals on soil micronutrient availability. Science of the Total Environment, 407(1), 297–303. doi:10.1016/j.scitotenv.2008.08.021.

    Article  CAS  Google Scholar 

  • Gibert, O., de Pablo, J., Cortina, J. L., & Ayora, C. (2005). Municipal compost-based mixture for acid mine drainage bioremediation: metal retention mechanisms. Applied Geochemistry, 20(9), 1648–1657. doi:10.1016/j.apgeochem.2005.04.012.

    Article  CAS  Google Scholar 

  • Gifford, S., Dunstan, R., O'Connor, W., Roberts, T., & Toia, R. (2004). Pearl aquaculture-profitable environmental remediation? Science of the Total Environment, 319(1), 27–37. doi:10.1016/S0048-9697(03)00437-6.

    Article  CAS  Google Scholar 

  • Ginzburg, O., & Steinberger, Y. (2012). Effects of forest wildfire on soil microbial-community activity and chemical components on a temporal-seasonal scale. Plant and Soil, 360(1–2), 243–257. doi:10.1007/s11104-012-1243-2.

    Article  CAS  Google Scholar 

  • Goforth, B. R., Graham, R. C., Hubebrt, K. R., Zanner, C. W., & Minnich, R. A. (2005). Spatial distribution and properties of ash and thermally altered soils after high severity forest fire southern California. International Journal of Wildland Fire, 14, 343–354. doi:10.1071/WF05038.

    Article  Google Scholar 

  • Grigal, D. (2003). Mercury sequestration in forests and peatlands. Journal of Environmental Quality, 32, 393–405. doi:10.2134/jeq2003.3930.

    Article  CAS  Google Scholar 

  • Groeschl, D. A., Johnson, J. E., & Smith, D. W. (1993). Wildfire effects on forest floor and surface soil in a table mountain pine-pitch pine forest. International Journal of Wildland Fire, 3(3), 149–154. doi:10.1071/WF9930149.

    Article  Google Scholar 

  • Hantson, S., Pueyo, S., & Chuveieco, E. (2015). Global fire size distribution is driven by human impact and climate. Global Ecology and Biogeography, 24(1), 77–86. doi:10.1111/geb.12246.

    Article  Google Scholar 

  • Harmanescu, M., Alda, L. M., Bordean, D. M., Gogoasa, I., & Gergen, I. (2011). Heavy metal health risk assessment for population via consumption of vegetables grown in old mining area; a case study: Banat County, Romania. Chemistry Central Journal, 5(64), 1–10. doi:10.1186/1752-153X-5-64.

    Google Scholar 

  • Harrison, R. M., Laxen, D. P., & Wilson, S. J. (1981). Chemical associations of lead, cadmium, copper, and zinc in street dusts and roadside soils. Environmental Science & Technology, 15(11), 1378–1383.

    Article  CAS  Google Scholar 

  • Hart, S. C., DeLuca, T. H., Newman, G. S., MacKenzie, M. D., & Boyle, S. I. (2005). Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. Forest Ecology and Management, 220(1), 166–184. doi:10.1016/j.foreco.2005.08.012.

    Article  Google Scholar 

  • Hartmann, M., Frey, B., Kölliker, R., & Widmer, F. (2005). Semi-automated genetic analyses of soil microbial communities: comparison of T-RFLP and RISA based on descriptive and discriminative statistical approaches. Journal of Microbiological Methods, 61(3), 349–360. doi:10.1016/j.mimet.2004.12.011.

    Article  CAS  Google Scholar 

  • Hasson, A.E.A., Mills, G.A., Timbal, B., & Walsh, K. (2008). Assessing the impact of climate change on extreme fire weather in southeast Australia, CAWCR (Centre for Australian Weather and Climate Research) Technical Report No.7, Melbourne, Australia.

  • Henig-Sever, N., Poliakov, D., & Broza, M. (2001). A novel method for estimation of wild fire intensity based on ash pH and soil microarthropod community. Pedobiologia, 45(2), 98–106. doi:10.1078/0031-4056-00072.

    Article  Google Scholar 

  • Hennessy, K., Lucas, C., Nicholls, N., Bathols, J., Suppiah, R., & Ricketts, J. (2005). Climate change impacts on fire-weather in south-east Australia. Report prepared by: Climate Impacts Group, CSIRO Atmospheric Research and the Australian Government Bureau of Meteorology, Aspendale, Victoria, Australia.

  • Hernández, T., Garcia, C., & Reinhardt, I. (1997). Short-term effect of wildfire on the chemical, biochemical and microbiological properties of Mediterranean pine forest soils. Biology and Fertility of Soils, 25(2), 109–116. doi:10.1007/s003740050289.

    Article  Google Scholar 

  • Hernandez, L., Probst, J., Probst, A. L., & Ulrich, E. (2003). Heavy metal distribution in some French forest soils: evidence for some atmospheric contamination. Science of the Total Environment, 312, 195–219. doi:10.1016/S0048-9697(03)00223-7.

    Article  CAS  Google Scholar 

  • Hightower, J. (2004). Exceeding the methyl mercury reference dose: how dangerous is it? Response to Schoen. Environmental Health Perspective, 112, A337–A338.

    Article  Google Scholar 

  • Hindwood, A. L., Sim, M. R., Jolley, D., de-Klerk, N., Bastone, E. B., Gerastomoulous, J., & Drummer, O. H. (2003). Hair and toenail arsenic concentrations of residents living in areas with high environmental arsenic concentrations. Environmental Health Perspective, 111, 187–193 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC 1241349/. Accessed 10 Nov 2016.

  • Huang, S., Li, M., Friedli, H. R., Song, Y., Chang, D., & Zhu, L. (2011). Mercury emissions from biomass burning in China. Environmental Science and Technology, 45, 9442–9448. doi:10.1021/es202224e.

    Article  CAS  Google Scholar 

  • IARC. (2004). International Agency for Research on Cancer. Some drinking water disinfectants and contaminants, including arsenic. In IARC Monographs on the evaluation of the carcinogenic risks to humans 84, 1–19.

  • Ignatavicius, G., Sakalauskiene, G., & Oskinis, V. (2006). Influence of land fires on increase of heavy metal concentrations in river waters of Lithuania. Journal of Environmental Engineering and Landscape Management, 14(1), 46a–51a. doi:10.1080/16486897. 2006.9636878.

    Google Scholar 

  • Ingwersen, J., Streck, T., Utermann, J., & Richter, J. (2000). Ground water preservation by soil protection: determination of tolerable total Cd contents and Cd breakthrough times. Journal of Plant Nutrition and Soil Science, 163(1), 31–40. doi:10.1002/(SICI)1522-2624(200002)163:1<31::AID-JPLN31>3.0.CO;2-B.

    Article  CAS  Google Scholar 

  • Intawongse, M., & Dean, J. R. (2006). Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract. Food Additives and Contaminants, 23(1), 36–48. doi:10.1080/02652030500387554.

    Article  CAS  Google Scholar 

  • IPCC. (2007). Climate change 2007: The physical science basis. New York: Cambridge University Press.

    Google Scholar 

  • IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of working group I to the fifth assessment report of the Intergovernment Panel on Climate Change. http://www.ipcc.ch/report/ ar5/wg1/. Accessed on 10 Nov 2015.

  • Jakubus, M., Kaczmarek, Z., Michalik, J., & Grzelak, M. (2010). The effect of different tree plantings and soil preparation methods on contents of selected heavy metals in post-fire soils. Fresenius Environmental Bulletin, 19(2a), 312–317.

    CAS  Google Scholar 

  • Jankaite, A. (2009). Soil remediation from heavy metals using mathematical modelling. Journal of Environmental Engineering and Landscape Management, 17(2), 121–129. doi:10.3846/1648-6897.2009.17.121-129.

    Article  Google Scholar 

  • Johansen, M. P., Hakonson, T. E., Whicker, F. W., & Breshears, D. D. (2003). Pulsed redistribution of a contaminant following forest fire. Journal of Environmental Quality, 32(6), 2150–2157. doi:10.2134/jeq2003.2150.

    CAS  Google Scholar 

  • Jovanovic, S. V. P., Ilic, M. D., Markovic, M. S., Mitic, V. D., Mandic, S. D. N., & Stojanovic, G. S. (2011). Wildfire impact on copper, zinc, lead and cadmium distribution in soil and relation with abundance in selected plants of Lamiaceae Family from Vidlic Mountain (Serbia). Chemosphere, 84, 1584–1591. doi:10.1016/j.chemosphere. 2011.05.048.

    Article  CAS  Google Scholar 

  • Jung, H. Y., Hogue, T. S., Rademacher, L. K., & Meixner, T. (2009). Impact of wildfire on source water contributions in Devil Creek, CA: evidence from end-member mixing analysis. Hydrological Processes, 23(2), 183–200. doi:10.1002/hyp.7132.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (fourth ed.). London: CRC Press, Boca Raton, FL, USA.

  • Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants. Boca Raton, Florida, USA: CRC Press.

    Google Scholar 

  • Kaschl, A., Römheld, V., & Chen, Y. (2002). The influence of soluble organic matter from municipal solid waste compost on trace metal leaching in calcareous soils. Science of the Total Environment, 291(1), 45–57. doi:10.1080/02652030500387554.

    Article  CAS  Google Scholar 

  • Kasprazak, K. S., Sunderman, F. W., & Salnikow, K. (2003). Nickel carcinogenesis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 533(1–2), 67–97. doi:10.1016/j.mrfmmm.2003.08.021.

    Article  CAS  Google Scholar 

  • Kelly, E. N., Schilndler, D. W., St. Louis, V. L., Donald, D. B., & Vladicka, K. E. (2006). Forest fire increases mercury accumulation by fishes via food web restructuring and increased mercury inputs. Proceedings of the National Academy of Science (PNAS), 103(51), 19380–19385. doi:10.1073/pnas.0609798104.

    Article  CAS  Google Scholar 

  • Khanna, P., & Raison, R. (1986). Effect of fire intensity on solution chemistry of surface soil under a Eucalyptus pauciflora forest. Soil Research, 24(3), 423–434. doi:10.1071/SR9860423.

    Article  CAS  Google Scholar 

  • Khanna, P., Raison, R., & Falkiner, R. (1994). Chemical properties of ash derived from eucalyptus litter and its effects on forest soils. Forest Ecology and Management, 66, 107–125. doi:10.1016/0378-1127(94)90151-1.

    Article  Google Scholar 

  • Kim, M. J., Ahn, K. H., & Jung, Y. (2002). Distribution of inorganic arsenic species in mine tailings of abandoned mines from Korea. Chemosphere, 49, 307–312. doi:10.1016/S0045-6535(02)00307-7.

    Article  CAS  Google Scholar 

  • Knoepp, J. D., Vsoe, J. M., & Swank, W. T. (2008). Nitrogen deposition and cycling across an elevation and vegetation gradient in southern Appalachian forest. International Journal of Environmental Studies, 65, 389–408. doi:10.1080/00207230701862348.

    Article  CAS  Google Scholar 

  • Kristensen, L. J., Taylor, M. P., Odigie, K. O., & Hibdon, S. A. (2014). Lead isotopic composition of ash sourced from Australian bushfires. Environmental Pollution, 190, 159–165. doi:10.1016/j.envpol.2014.03.025.

    Article  CAS  Google Scholar 

  • Lacatsu, R., Rauta, C., Carstea, S., & Ghelase, I. (1996). Soil-plant-man relationships in heavy metal polluted areas in Romania. Journal of Applied Geochemistry, 11, 105–107. doi:10.1016/0883-2927(95)00101-8.

    Article  Google Scholar 

  • Lee, J. S., Chon, H. T., & Kim, K. W. (2005). Human risk assessment of As, Cd, Cu and Zn in the abandoned metal mine site. Environmental Geochemical Health, 27(2), 185–191. doi:10.1007/s10653-005-0131-6.

    Article  CAS  Google Scholar 

  • Leung, A. O. W., Duzgoren-Aydin, N. S., Cheung, K. C., & Wong, M. H. (2008). Heavy metal concentration of surface dust from e-waste recycling and its human health implications in southeast China. Environmental Science and Technology, 42(7), 2674–2680. doi:10.1021/es071873x.

    Article  CAS  Google Scholar 

  • Lewis, R. (2004). Occupational exposures: metals. In J. LaDou (Ed.), Current Occupational & Environmental Medicine (3rd ed., pp. 439–441). USA: Lange Medical Books, McGraw-Hill Companies, Inc..

    Google Scholar 

  • Levy, B. S., & Nassetta, W. J. (2003). Neurologic effects of manganese in humans: a review. International Journal of Occupational and Environmental Health, 9(2), 153–163. doi:10.1179/oeh.2003.9.2.153.

    Article  CAS  Google Scholar 

  • Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'neill, B., et al. (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70(5), 1719–1730.

    Article  CAS  Google Scholar 

  • Liang, Y., Liang, H., & Zhu, S. (2014). Mercury emission from coal seam fire at Wuda, Inner Mongolia, China. Atmospheric Environment, 83, 176–184. doi:10.1016/j.atmosenv. 2013.09.001.

    Article  CAS  Google Scholar 

  • Liegel, L. H. (1983). Effect of dry-heat sterilization on chemical properties of Puerto Rican soils. Communications in Soil Science and Plant Analysis, 14(4), 277–286. doi:10.1080/00103628309367363.

    Article  CAS  Google Scholar 

  • Lim, H. S., Chon, H. T., Lee, J. S., & Sager, M. (2008). Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au-Ag mine in Korea. Journal of Geochemical Exploration, 96(2–3), 223–230. doi:10.1016/j.gexplo.2007. 04.008.

    Article  CAS  Google Scholar 

  • Lin, C. J., & Pehkonen, S. O. (1999). The chemistry of atmospheric mercury: a review. Atmospheric Environment, 33, 2067–2079. doi:10.1016/S1352-2310(98)00387-2.

    Article  CAS  Google Scholar 

  • Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., Fitzgerald, W., Pirrone, N., Prestbo, E., & Seigneur, C. (2007). A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. AMBIO: A Journal of Human Environment, 36, 19–33. doi:10.1579/ 0044-7447(2007)36[19:ASOPAU]2.0.CO;2.

    Article  CAS  Google Scholar 

  • Liu, J., Qu, W., & Kadiiska, M. B. (2009). Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicology and Applied Pharmacology, 238(3), 209–214. doi:10.1016/j.taap.2009.01.029.

    Article  CAS  Google Scholar 

  • Liu, Y., Stanturf, J., & Goodrick, S. (2010). Trends in global wildfire potential in a changing climate. Forest Ecology and Management, 259(4), 685–697. doi:10.1016/j.foreco. 2009.09.002.

    Article  Google Scholar 

  • Machado, A., Serpa, D., Ferreira, R., Rodríguez-Blanco, M., Pinto, R., Nunes, M., et al. (2015). Cation export by overland flow in a recently burnt forest area in north-central Portugal. Science of the Total Environment, 524, 201–212. doi:10.1016/j.catena.2004.09.006.

    Article  CAS  Google Scholar 

  • Mahaffey, K. R. (1999). Methylmercury: a new look at the risks. Public health reports, 114(5), 396–399, 402-4013. PMCID: PMC1308510.

  • Maia, P., Pausas, J., Arcenegui, V., Guerrero, C., Pérez-Bejarano, A., Mataix-Solera, J., & Keizer, J. (2012). Wildfire effects on the soil seed bank of a maritime pine stand—the importance of fire severity. Geoderma, 191, 80–88. doi:10.1016/j.geoderma.2012.02.001.

    Article  Google Scholar 

  • Malvar, M., Prats, S., Nunes, J., & Keizer, J. (2011). Post-fire overland flow generation and inter-rill erosion under simulated rainfall in two eucalypt stands in north-central Portugal. Environmental Research, 111(2), 222–236. doi:10.1016/j.envres.2010.09.003.

    Article  CAS  Google Scholar 

  • Mandal, A., & Sengupta, D. (2006). An assessment of soil contamination due to heavy metals around a coal-fired thermal power plant in India. Environmental Geology, 51(3), 409–420. doi:10.1007/s00254-006-0336-8.

    Article  CAS  Google Scholar 

  • Marlon, J.R. (2009). The geography of fire: a paleo perspective. PhD dissertation, Department of Geography and the Graduate School of the University of Oregon, USA.

  • Marlon, J. R., Bartleina, P. J., Walsh, M. K., Harrison, S. P., Brown, K. J., Edward, M. E., et al. (2009). Wildfire responses to abrupt climate change in North America. Proceedings of the National Academy of Science, USA, 106, 2519–2524. doi:10.1073/pnas.0808212106.

    Article  CAS  Google Scholar 

  • Martin, S., & Griswold, W. (2009). Human health effects of heavy metals. Environ Science & Technology Briefs for Citizens, 15, 1–6.

    Google Scholar 

  • Mazumdar, G. (2008). Chronic arsenic toxicity and human health. Indian Journal of Medical Research, 128, 436–447.

    Google Scholar 

  • McLaughlin, M. J., Parker, D., & Clarke, J. (1999). Metals and micronutrients–food safety issues. Field Crops Research, 60(1), 143–163. doi:10.1016/S0378-4290(98)00137-3.

    Article  Google Scholar 

  • Melendez-Perez, J. J., Fostier, A. H., Carvalho, J. A., Windmöller, C. C., Santos, J. C., & Carpi, A. (2014). Soil and biomass mercury emissions during a prescribed fire in the Amazonian rain forest. Atmospheric Environment, 96, 415–422. doi:10.1016/ j.atmosenv.2014.06.032.

    Article  CAS  Google Scholar 

  • Mergler, D., Anderson, H. A., Chan, H. M., Mahaffey, K. R., Murray, M., Sakamoto, M., & Stern, A. H. (2007). Methylmercury exposure and health effects in humans: a worldwide concern. Ambio: A Journal of the Human Environment, 36, 3–11. doi:10.1579/0044-7447(2007)36[3:MEAHEI]2.0.CO;2.

    Article  CAS  Google Scholar 

  • Meyer, G. A., Wells, S. G., Balling, R. C., & Jull, A. J. T. (1992). Response of alluvial systems to fire and climate change in Yellowstone national park. Letters to Nature, 357, 147.

    Article  Google Scholar 

  • Miao, S., Edelstein, C., Carstenn, S., & Gu, B. (2010). Immediate ecological impacts of a prescribed fire on a cattail-dominated wetland in Florida Everglades. Fundamental and Applied Limnology/Archiv für Hydrobiologie, 176(1), 29–41. doi:10.1127/1863-9135/2010/0176-0029.

    Article  CAS  Google Scholar 

  • Michalke, B., Halbach, S., & Nischwitz, V. (2007). Speciation and toxicological relevance of manganese in humans. Journal of Environmental Monitoring, 9(7), 650–656. doi:10.1039/B704173J.

    Article  CAS  Google Scholar 

  • Michelazzo, P. A. M., Fostier, A. H., Magarelli, G., Santos, J. C., & Carvalho, J. A. (2010). Mercury emissions from forest burning in southern Amazon. Geophysical Research Letters, 37, 1–5. doi:10.1029/2009GL042220.

    Article  CAS  Google Scholar 

  • Minshall, G. W. (2003). Responses of stream benthic macroinvertebrates to fire. Forest Ecology Management, 178, 155–161. doi:10.1016/S0378-1127(03)00059-8.

    Article  Google Scholar 

  • Moody, J. A., Shakesby, R. A., Robichaud, P. R., Cannon, S. H., & Martin, D. A. (2013). Current research issues related to post-wildfire runoff and erosion processes. Earth-Science Reviews, 122, 10–37. doi:10.1016/j.earscirev.2013.03.004.

    Article  Google Scholar 

  • Morel, F. M., Kraepiel, A. M., & Amyot, M. (1998). The chemical cycle and bioaccumulation of mercury. Annual Review of Ecology and Systematics, 29(1), 543–566. doi:10.1146/annurev.ecolsys.29.1.543.

    Article  Google Scholar 

  • Morrell, B. G., Lepp, N. W., & Phipps, D. A. (1986). Vanadium uptake by higher plants: some recent developments. Environmental Geochemistry and Health, 8(1), 14–18. doi:10.1007/BF02280116.

    Article  CAS  Google Scholar 

  • Mouillot, F., Rambal, S., & Joeffre, R. (2002). Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean type ecosystem. Global Change Biology, 8, 423–437. doi:10.1046/j.1365-2486.2002.00494.x.

    Article  Google Scholar 

  • Muñoz-Rojas, M., Erickson, T. E., Martini, D., Dixon, K. W., & Merritt, D. J. (2016). Soil physicochemical and microbiological indicators of short, medium and long term post-fire recovery in semi-arid ecosystems. Ecological Indicators, 63, 14–22. doi:10.1016/ j.ecolind.2015.11.038.

    Article  CAS  Google Scholar 

  • Munthe, J., Lee, Y., Hultberg, H., Iverfeldt, Å., Borg, G. C., & Andersson, B. (1998). Cycling of mercury and methylmercury in the Gårdsjön catchments. In H. Hultberg & R. Skeffington (Eds.), Experimental reversal of acid rain effects: the Gårdsjön Roof Project (pp. 261–276). New York: John Wiley and Sons.

    Google Scholar 

  • Nabulo, G., Young, S., & Black, C. (2010). Assessing risk to human health from tropical leafy vegetables grown on contaminated urban soils. Science of the Total Environment, 408(22), 5338–5351. doi:10.1016/j.scitotenv.2010.06.034.

    Article  CAS  Google Scholar 

  • Narodoslawsky, M., & Obernberger, I. (1996). From waste to raw materials—the route from biomass to wood ash for cadmium and other heavy metals. Journal of Hazardous Materials, 50, 157–168. doi:10.1016/0304-3894(96)01785-2.

    Article  CAS  Google Scholar 

  • Neary, D. G., Klopatek, C. C., DeBano, L. F., & Ffolliott, P. F. (1999). Fire effects on belowground sustainability: a review and synthesis. Forest Ecology and Management, 122(1), 51–71. doi:10.1016/S0378-1127(99)00032-8.

    Article  Google Scholar 

  • Neary, D. G., Ryan, K. C., & DeBano, L. F. (2005). Wildland fire in ecosystems: effects of fire on soils and water. General Technical Report, US Department of Agriculture. http://www.fs.fed.us/rm/pubs/rmrs_gtr042_4.pdf. Accessed 10 Nov 2016.

  • NHMRC. (2011). Australian drinking water guidelines paper 6 national water quality management strategy, National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia, Canberra.

  • Nipper, M., Ropper, D., Williams, E., Martin, M., Vandam, L., & Mills, G. (1998). Sediment toxicity and benthic communities in mildly contaminated mud flats. Environmental Toxicology and Chemistry, 17, 502–510. doi:10.1002/etc.5620170322.

    Article  CAS  Google Scholar 

  • Nobuntou, W., Parkpian, P., Kim, O. N. T., Noomhorm, A., Delaune, R. D., & Jagsujinda, A. (2010). Lead distribution and its potential risk to the environment: lessons learned from environmental monitoring of an abandon mine. Journal of Environmental Science and Health, Part A: Toxic / Hazardous Substances and Environmental Engineering, 45(13), 1702–1714. doi:10.1080/10934529.2010.513232.

    Article  CAS  Google Scholar 

  • Norouzi, M., & Ramezanpour, H. (2013). Effects of fire in chemical forms of iron and manganese in forest soils of Iran. Environmental Forensics, 14, 169–177. doi:10.1080/15275922.2013.781077.

    Article  CAS  Google Scholar 

  • Nriagu, J. O. (1989). A global assessment of natural sources of atmospheric trace metals. Nature, 338(6210), 47–49. doi:10.1038/333134a0.

    Article  CAS  Google Scholar 

  • Nriagu, J. O. (1990). The rise and fall of leaded gasoline. Science of the Total Environment, 92, 13–28. doi:10.1016/0048-9697(90)90318-O.

    Article  CAS  Google Scholar 

  • Nriagu, J. O. (1996). A history of global metal pollution. Science, 272(5259), 223.

    Article  CAS  Google Scholar 

  • NTP. (2012). National Toxicology Programme. NTP monographs on health effects of low level lead. US Department of Health and Human Services (publication No. 12–5996).

  • Nunes, B., Silva, V., Campos, I., Pereira, J. L., Pereira, P., et al. (2017). Off-site impacts of wildfires on aquatic systems—biomarker responses of the mosquitofish Gambusia holbrooki. Science of the Total Environment, 581-582, 305–313. doi:10.1016/j.scitotenv.2016.12.129.

    Article  CAS  Google Scholar 

  • Nzihou, A., & Stanmore, B. (2013). The fate of heavy metals during combustion and gasification of contaminant biomass—a brief review. Journal of Hazardous Materials, 256 - 257, 56–66. doi:10.1016/j.jhazmat.2013.02.050.

    Article  CAS  Google Scholar 

  • Obrist, D. (2007). Atmospheric mercury pollution due to losses of terrestrial carbon pools? Biogeochemistry, 85(2), 119–123. doi:10.1007/s10533-007-9108-0.

    Article  CAS  Google Scholar 

  • Obrist, D., Moosmüller, H., Schürmann, R., Chen, L. W. A., & Kreidenweis, S. M. (2008). Particulate-phase and gaseous elemental mercury emissions during biomass combustion: controlling factors and correlation with particulate matter emissions. Environmental Science and Technology, 42, 721–727. doi:10.1021/es071279n.

    Article  CAS  Google Scholar 

  • Odigie, K. O., & Flegal, A. R. (2011). Pyrogenic remobilization of historic industrial lead depositions. Environmental Science and Technology, 45, 6290–6295. doi:10.1021/ es200944w.

    Article  CAS  Google Scholar 

  • Odigie, K. O., & Flegal, A. R. (2014). Trace metal inventories and lead isotopic composition chronicle a forest fire’s remobilization of industrial contaminants deposited in the Angeles National Forest. PloS One, 9(9), 1–9. doi:10.1371/journal.pone.0107835.

    Article  CAS  Google Scholar 

  • Odigie, K. O., Khanis, E., Hibdin, S. A., Jana, P., Urrutia, K., & Flegal, A. R. (2016). Remobilization of trace element by forest fire in Patagonic, Chile. Regional Environmental Change, 16(4), 1089–1096. doi:10.1007/s10113-015-0825-y.

    Article  Google Scholar 

  • Offenbacher, E. G. (1994). Promotion of chromium absorption by ascorbic acid. Trace Elements and Electrolites, 11, 178–181.

    CAS  Google Scholar 

  • Pacyna, J. M., & Pacyna, E. G. (2001). An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environmental Reviews, 9(4), 269–298. doi:10.1139/er-2015-0051.

  • Pagotto, C., Remy, N., Legret, M., & Le Cloirec, P. (2001). Heavy metal pollution of road dust and roadside soil near a major rural highway. Environmental Technology, 22(3), 307–319. doi:10.1080/09593332208618280.

    Article  CAS  Google Scholar 

  • Pardini, G., Gispert, M., & Dunjó, G. (2004). Relative influence of wildfire on soil properties and erosion processes in different Mediterranean environments in NE Spain. Science of the Total Environment, 328(1), 237–246. doi:10.1016/j.scitotenv.2004.01.026.

    Article  CAS  Google Scholar 

  • Parra, J. G., Rivero, V. C., & Lopez, T. I. (1996). Forms of Mn in soils affected by a forest fire. Science of the Total Environment, 181(3), 231–236. doi:10.1016/0048-9697(95)05022-1.

    Article  Google Scholar 

  • Pausas, J. G. (2004). Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Climatic Change, 63(3), 337–350. doi:10.1023/B:CLIM.0000018508.94901.9c.

    Article  Google Scholar 

  • Parsons. (2011). Clean up plan—Liddell’s calcine sands, Bendigo Victoria. Report of Parsons Brinckerhoff for Parks Victoria, South Bank, Victoria, Australia.

  • Pearce, D. C., Dowling, K., & Sim, M. R. (2012). Cancer incidence and soil arsenic exposure in a historical gold mining area in Victoria, Australia: a geospatial analysis. Journal of Exposure Science and Environmental Epidemology, 22, 248–257. doi:10.1038/ jes.2012.15.

    Article  CAS  Google Scholar 

  • Pechony, O., & Shindell, D. T. (2010). Driving forces of global wildfires over the past millennium and the forthcoming century. Proceedings of the National Academy of Science, 107(45), 19167–19170. doi:10.1073/ pnas.1003669107.

    Article  CAS  Google Scholar 

  • Pereira, M. G., Trigo, R. M., da Camara, C. C., Pereira, J. M., & Leite, S. M. (2005). Synoptic patterns associated with large summer forest fires in Portugal. Agricultural and Forest Meteorology, 129(1), 11–25. doi:10.1016/j.agrformet.2004.12.007.

    Article  Google Scholar 

  • Pereira, P., Jordán, A., Cerdà, A., & Martin, D. (2014). Editorial: the role of ash in fire-affected ecosystems. Catena, 135, 337–339. doi: 10.1016/j.catena.2014.11.016

  • Pereira, P., & Ubeda, X. (2010). Spatial distribution of heavy metals released from ashes after a wildfire. Journal of Environmental Engineering and Landscape Management, 18(1), 13–22. doi:10.3846/jeelm.2010.02.

    Article  Google Scholar 

  • Pereira, P., Ubeda, X., Outeiro, L., & Martin, D. (2008). Solutes release from leaf litter (Quercus suber, Quercus robur, Pinus pinea) exposed to different fire intensities in a laboratory experiment. EGU General Assembly. doi:10.1016/j.envres.2010.09.002.

    Google Scholar 

  • Pereira, P., Ubeda X., Martin, D.A., Guerrero, C., & Mataix-Solera, J. (2009). Temperature effects on the release of some micronutrients from organic matter from Mediterranean forests. A comparison between laboratory experiment and prescribed fire. International Meetings of Fire Effects on Soil Properties, 11–15 Feb 2009, Murmaris, Turkey.

  • Pereira, P., Úbeda, X., Martin, D., Mataix-Solera, J., & Guerrero, C. (2011). Effects of a low severity prescribed fire on water-soluble elements in ash from a cork oak (Quercus suber) forest located in the northeast of the Iberian Peninsula. Environmental Research, 111(2), 237–247. doi:10.1016/j.envres.2010.09.002.

    Article  CAS  Google Scholar 

  • Pereira, P., Cerda, A., Ubeda, X., Mataix-Solera, J., Martin, D., et al. (2013a). Spatial models for monitoring the spatio-temporal evolution of ashes-after fire—a case study of a burnt grassland in Lithuania. Solid Earth, 4, 153–165. doi:10.5194/se-4-153-2013.

    Article  Google Scholar 

  • Pereira, P., Ubeda, X., Martin, D., Mataix-Solera, J., Cerda, A., & Burguet, M. (2013b). Wildfire effects on extractable elements in ash from a Pinus pinaster forest in Portugal. Hydrological Processes, 28(11), 3681–3690. doi:10.1002/hyp.9907.

    Article  CAS  Google Scholar 

  • Phillips, J. I., Green, F. Y., Davies, J. C., & Jill Murray Mbch, F. (2010). Pulmonary and systemic toxicity following exposure to nickel nanoparticles. American Journal of Industrial Medicine, 53(8), 763–767. doi:10.1002/ajim.20855.

    Google Scholar 

  • Pirkle, J. L., Brody, D. J., Gunter, E. W., Kramer, R. A., Paschal, D. C., Flegal, K. M., & Matt, T. D. (1994). The decline in blood lead levels in the United States—the National Health and Nutrition Examination Surveys (NHANES). Journal of American Medical Association, 272(4), 284–291. doi:10.1001/jama.1994.03520040046039.

    Article  CAS  Google Scholar 

  • Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R., Friedli, H., Leaner, J., et al. (2010). Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics, 10, 5951–5964. doi:10.5194/acp-10-5951-2010.

    Article  CAS  Google Scholar 

  • Plumlee, G.S., Martin, D.A., Hoefen, T., Kokaly, R., Hageman, P., Eckberg, A., et al. (2007). Preliminary analytical results for ash and burned soils from the October 2007 southern California wildfires. Open Report No. 2007–1407, US Geological Survey.

  • Prats, S. A., dos Santos Martins, M. A., Malvar, M. C., Ben-Hur, M., & Keizer, J. J. (2014). Polyacrylamide application versus forest residue mulching for reducing post-fire runoff and soil erosion. Science of the Total Environment, 468, 464–474. doi:10.1016/j.scitotenv.2013.08.066.

    Article  CAS  Google Scholar 

  • Qiu, C. S., Ma, Z. W., Yang, J., Liu, Y., Bi, J., & Huang, L. (2012). Human exposure pathways of heavy metals in a lead-zinc mining area, Jiangsu Province, China. PloS One, 7(e46793), 1–11. doi:10.1371/journal.pone.0046793.

    Google Scholar 

  • Quintano, C., Fernández-Manso, A., Calvo, L., Marcos, E., & Valbuena, L. (2015). Land surface temperature as potential indicator of burn severity in forest Mediterranean ecosystems. International Journal of Applied Earth Observations and Geoinformation, 36, 1–12. doi:10.1016/j.jag.2014.10.015.

    Article  Google Scholar 

  • Rakhunde, R., Jasudkar, D., Deshpande, L., Juneja, H., & Labhasetwar, P. (2012). Health effects and significance of arsenic speciation in water. International Journal of Environmental Sciences and Research, 1(4), 92–96.

    Google Scholar 

  • Ravichandran, M. (2004). Interactions between mercury and dissolved organic matter––a review. Chemosphere, 55, 319–331. doi:10.1016/j.chemosphere.2003.11.011.

    Article  CAS  Google Scholar 

  • Rea, A. W., Lindberg, S. E., & Keeler, G. J. (2000). Assessment of dry deposition and foliar leaching of mercury and selected trace elements based on washed foliar and surrogate surfaces. Environmental Science & Technology, 34(12), 2418–2425. doi:10.1021/es991305k.

    Article  CAS  Google Scholar 

  • Rea, A. W., Lindberg, S. E., & Keeler, G. J. (2001). Dry deposition and foliar leaching of mercury and selected trace elements in deciduous forest through fall. Atmospheric Environment, 35(20), 3453–3462. doi:10.1016/S1352-2310(01)00133-9.

    Article  CAS  Google Scholar 

  • Rea, A. W., Lindberg, S., Scherbatskoy, T. A., & Keeler, G. (2002). Mercury accumulation in foliage over time in two northern mixed-hardwood forests. Water Air and Soil Pollution, 133, 49–67. doi:10.1023/A:1012919731598.

    Article  CAS  Google Scholar 

  • Reis, A. T., Coelho, J. P., Rucandio, I., Davidson, C. M., Duarte, A. C., & Pereira, E. (2015). Thermo-desorption: a valid tool for mercury speciation in soils and sediments? Geoderma, 237, 98–104. doi:10.1016/j.geoderma.2014.08.019.

    Article  CAS  Google Scholar 

  • Reneau, S. L., Katzman, D., Kuyumjian, G. A., Lavine, A., & Malmon, D. V. (2007). Sediment delivery after a wildfire. Geology, 35(2), 151–154.

    Article  Google Scholar 

  • Richardson, C. J. (1999). Ecological functions of wetlands in the landscape. In M. A. Lewis (Ed.), Ecotoxicology and risk assessment for wetlands (pp. 9–25). Florida, USA: SETAC Press.

    Google Scholar 

  • Riewert, J. S., Farago, M. E., Cikrt, M., & Bencko, V. (2000). Difference in lead bioavailability between smelting and mining area. Water, Air & Soil Pollution, 122(1–2), 203–229. doi:10.1023/A:1005251527946.

    Google Scholar 

  • Riggan, P. J., Lockwood, R. N., & Lopez, E. N. (1985). Deposition and processing of airborne nitrogen pollutants in Mediterranean type ecosystems of southern California. Environmental Science and Technology, 19, 781–789.

    Article  CAS  Google Scholar 

  • Rodriguez, L., Ruiz, E., Alonso-Azcarate, J., & Rincon, J. (2009). Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain. Journal of Environmental Management, 90, 1106–1116. doi:10.1016/j.jenvman.2008.04.007.

    Article  CAS  Google Scholar 

  • Rutter, A. P., Schauer, J. J., Shafer, M. M., Creswell, J. E., Olson, M. R., Robinson, M., et al. (2011). Dry deposition of gaseous elemental mercury to plants and soils using mercury stable isotopes in a controlled environment. Atmospheric Environment, 45(4), 848–855. doi:10.1016/j.atmosenv.2010.11.025.

    Article  CAS  Google Scholar 

  • Sabin, L. D., Lim, J. H., Stolzenbach, K. D., & Schiff, K. C. (2005). Contribution of trace metals from atmospheric deposition to stormwater runoff in a small impervious urban catchment. Water Research, 39, 3929–3937. doi:10.1016/j.watres.2005.07.003.

    Article  CAS  Google Scholar 

  • Sadique, M. (1997). Arsenic chemistry in soils: an overview of thermodynamic predictions and the field observations. Water Air & Soil Pollution, 93(1), 117–136. doi:10.1007/BF02404751.

    Google Scholar 

  • Salnikow, K., Li, X., & Lippmann, M. (2004). Effect of nickel and iron co-exposure on human lung cells. Toxicology and Applied Pharmacology, 196(2), 258–265. doi:10.1016/j.taap.2004.01.003.

    Article  CAS  Google Scholar 

  • Santín, C., Doerr, S. H., Otero, X. L., & Chafer, C. J. (2015). Quantity, composition and water contamination potential of ash produced under different wildfire severities. Environmental Research, 142, 297–308. doi:10.1016/j.envres.2015.06.041.

    Article  CAS  Google Scholar 

  • Schaider, L. A., Senn, D. B., Brabander, D. J., McCarthy, K. D., & Shine, J. P. (2007). Characterization of Zn, Pb and cd in mine waste: implications for transport, exposure and bioavailability. Environmental Science and Technology, 41, 4164–4171. doi:10.1021/es0626943.

    Article  CAS  Google Scholar 

  • Scheuhammer, A. M., Meyer, M. W., Sandheinrich, M. B., & Murray, M. W. (2007). Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio: A Journal of the Human Environment, 36, 12–19. doi:10.1579/0044-7447 (2007)36[12:EOEMOT]2.0.CO;2.

    Article  CAS  Google Scholar 

  • Scholz, V., & Ellerbrock, R. (2002). The growth productivity and environmental impact of cultivation of energy crop on sandy soil in Germany. Biomass and Bioenergy, 23, 81–92. doi:10.1016/S0961-9534(02)00036-3.

    Article  CAS  Google Scholar 

  • Scokart, P., Meeus-Verdinne, K., & Borger, R. d. (1983). Mobility of heavy metals in polluted soils near zinc smelters. Water, Air, & Soil Pollution, 20(4), 451–463. doi:10.1007/BF00208519.

    Article  CAS  Google Scholar 

  • Scrimgeour, G. J., Tonn, W. M., Paszkowski, C. A., & Goater, C. (2001). Benthic macroinvertebrate biomass and wildfires: evidence for enrichment of boreal subarctic lakes. Freshwater Biology, 46(3), 367–378. doi:10.1046/j.1365-2427.2001.00682.x.

    Article  CAS  Google Scholar 

  • Sen, I. S., & Peucker-Ehrenbrink, B. (2012). Anthropogenic disturbance of element cycles at the earth’s surface. Environmental Science & Technology, 46(16), 8601–8609. doi:10.1021/es301261x.

    Article  CAS  Google Scholar 

  • Shakesby, R. (2011). Post-wildfire soil erosion in the Mediterranean: review and future research directions. Earth-Science Reviews, 105(3), 71–100. doi:10.1016/j.earscirev.2011.01.001.

    Article  Google Scholar 

  • Shakesby, R., Coelho, C., Ferreira, A., Terry, J., & Walsh, R. (1993). Wildfire impacts on soil-erosion and hydrology in wet Mediterranean forest, Portugal. International Journal of Wildland Fire, 3(2), 95–110. doi:10.1071/WF9930095.

    Article  Google Scholar 

  • Shakesby, R. A., & Doerr, S. H. (2006). Wildfire as a hydrological and geomorphological agent. Earth-Science Reviews, 74, 269–307. doi:10.1016/j.earscirev.2005.10.006.

    Article  Google Scholar 

  • Sharma, R. K., & Agrawal, M. (2005). Biological effects of heavy metals: an overview. Journal of Environmental Biology, 26(2), 301–313.

    CAS  Google Scholar 

  • Shcherbov, B. L. (2012). The role of forest floor in migration of metals and artificial nuclides during forest fires in Siberia. Contemporary Problems of Ecology, 5(2), 191–199. doi:10.1134/S1995425512020114.

    Article  Google Scholar 

  • Shin, H. W., Sidharthan, M., & Young, K. S. (2002). Forest fire ash impact on micro - and macro-algae in the receiving waters of the east coast of South Korea. Marine Pollution Bulletin, 45, 203–209. doi:10.1016/S0025-326X(02)00156-X.

    Article  CAS  Google Scholar 

  • Siccama, T. G., Smith, W. H., & Mader, D. L. (1980). Changes in lead, zinc, copper, dry weight, and organic matter content of the forest floor of white pine stands in central Massachusetts over 16 years. Environmental Science and Technology, 14, 54–56. doi:10.1021/es60161a002.

    Article  CAS  Google Scholar 

  • Silva, V., Pereira, J. L., Campos, I., Keizer, J. J., Gonçalves, F., & Abrantes, N. (2015). Toxicity assessment of aqueous extracts of ash from forest fires. Catena, 135, 401–408. doi:10.1016/j.catena.2014.06.021.

    Article  CAS  Google Scholar 

  • Sipos, P., Németh, T., & Mohai, I. (2005). Distribution and possible immobilization of lead in a forest soil (Luvisol) profile. Environmental Geochemistry and Health, 27(1), 1–10. doi:10.1007/s10653-004-1581-y.

    Article  CAS  Google Scholar 

  • Skyllberg, U., Xia, K., Bloom, P. R., Nater, E. A., & Bleam, W. F. (2000). Binding of mercury(II) to reduced sulfur in soil organic matter along upland-peat soil transects. Journal of Environmental Quality, 29(3), 855–865.

    Article  CAS  Google Scholar 

  • Smedley, P. I., & Kinniburg, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568. doi:10.1016/S0883-2927(02)00018-5.

    Article  CAS  Google Scholar 

  • Smith, A. H., & Steinmaus, C. M. (2009). Health effects of arsenic and chromium in drinking water: recent human findings. Annual Review of Public Health, 30, 107–122. doi:10.1146/annurev.publhealth.031308.100143.

    Article  Google Scholar 

  • Smith, H. G., Sheridan, G. J., Nyman, P., & Haydon, S. (2011). Wildfire effects on water quality in forest catchments: a review with implications for water supply. Journal of Hydrology, 396, 170–192. doi:10.1016/j.hydrol.2010.10.043.

    Article  CAS  Google Scholar 

  • Solomon, F. (2008). Impacts of metals on aquatic ecosystems and human health. Environment and Communities, 14–19. http://digital.lib.washington.edu/researchworks/handle/1773/16440. accessed 27 Sep 2016.

  • Someshwar, A. V. (1996). Wood and combination wood-fired boiler ash characterization. Journal of Environmental Quality, 25, 962–972. doi:10.2134/jeq1996.00472425002 500050006x.

    Article  CAS  Google Scholar 

  • Sposito, G. (1989). The chemistry of soils. New York: Oxford university press.

    Google Scholar 

  • Stein, E. D., Brown, J. S., Hogue, T. S., Burke, M. P., & Kinoshita, A. (2012). Stormwater contaminant loading following southern California wildfires. Environmental Toxicology and Chemistry, 31(11), 2625–2638. doi:10.1002/etc.1994.

    Article  CAS  Google Scholar 

  • Swetnam, T. W. (1993). Fire history and climate change in giant sequoia groves. Science, 262, 885–889.

    Article  CAS  Google Scholar 

  • Syphard, A. D., & Keeley, J. E. (2015). Location, timing and extent of wildfire vary by cause of ignition. International Journal of Wildland Fire, 24, 37–47. doi:10.1071/WF14024.

    Article  Google Scholar 

  • Taylor, M. P., MacKay, A. K., Hudson-Edward, K. A., & Holz, E. (2010). Soil, Cd, Cu, Pb and Zn contaminants around Mount Isa City, Queensland, Australia: potential sources and risks to human health. Applied Geochemistry, 25, 841–855. doi:10.1016/j.apgeochem. 2010.03.003.

    Article  CAS  Google Scholar 

  • Tedim, F., Remelgado, R., Martin, J., & Carvalho, S. (2015). The largest fires in Portugal: the constraints of burned area size on the comprehension of fire severity. Journal of Environmental Biology, 36, 133–143.

    Google Scholar 

  • Tipping, E. (1998). Humic ion-bonding model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquatic Geochemistry, 4(1), 3–47. doi:10.1023/A:1009627214459.

    Article  CAS  Google Scholar 

  • Tipping, E., Lofts, S., & Sonke, J. (2011). Humic ion-binding model VII: a revised parameterisation of cation-binding by humic substances. Environmental Chemistry, 8(3), 225–235. doi:10.1071/EN11016.

    Article  CAS  Google Scholar 

  • Trigo, R. M., Pereira, J., Pereira, M. G., Mota, B., Calado, T. J., Dacamara, C. C., & Santo, F. E. (2006). Atmospheric conditions associated with the exceptional fire season of 2003 in Portugal. International Journal of Climatology, 26(13), 1741–1757. doi:10.1002/joc.1333.

    Article  Google Scholar 

  • Ulery, A. L., & Graham, R. (1993). Forest fire effects on soil colour and texture. Soil Science Society of America Journal, 57(1), 135–140. doi:10.2136/sssaj1993.03615995005700010026x.

    Article  Google Scholar 

  • Ulery, A., Graham, R., & Amrhein, C. (1993). Wood-ash composition and soil pH following intense burning. Soil Science, 156(5), 358–364.

    Article  CAS  Google Scholar 

  • Ullrich, S. M., Tanton, T. W., & Abdrashitova, S. A. (2001). Mercury in the aquatic environment: a review of factors affecting methylation. Environmental Science and Technology, 31, 241–293. doi:10.1080/20016491089226.

    Article  CAS  Google Scholar 

  • UNEP. (2013). Global mercury assessment 2013 (DTI/1636/GE). Geneva, Switzerland: United Nations Environmental Programme.

    Google Scholar 

  • USDL. (2004). United States Department of Labour. Occupational Safety and Health Administration (OHSA); Safety and Health Topics: Heavy Metals. http://www.osha.gov/SLTC/metalsheavy. Accessed 15 Jul 2016.

  • Valenzuela, O. L., Borja-Aburto, V. H., Garcia-Vargas, G. G., et al. (2005). Urinary trivalent methylated arsenic species in a population chronically exposed to inorganic arsenic. Environmental Health Perspective, 113(3), 250–254.

    Article  CAS  Google Scholar 

  • Veiga, M. M., Meech, J. A., & Oñate, N. (1994). Mercury pollution from deforestation. Nature, 368, 816–817. doi:10.1038/368816a0.

    Article  CAS  Google Scholar 

  • Verma, S., & Jayakumar, S. (2012). Impact of forest fire on physical, chemical and biological properties of soil: a review. Proceedings of the International Academy of Ecology and Environmental Sciences, 2(3), 168.

    CAS  Google Scholar 

  • Violante, A., Cozzolino, V., Perelomov, L., Caporale, A. G., & Pigna, M. (2010). Mobility and bioavailability of heavy metal and metalloids in soil environment. Journal of Soil Science and Plant Nutrition, 10(3), 268–292. doi:10.4067/ S0718- 951620100001 00005.

    Article  Google Scholar 

  • Waalkes, M. P. (2003). Cadmium carcinogenesis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 533(1), 107–120. doi:10.1016/j.mrfmmm.2003.07.011.

    Article  CAS  Google Scholar 

  • Waalkes, M. P., Rehm, S., Riggs, C. W., Bare, R. M., Devor, D. E., Poirier, L. A., et al. (1988). Cadmium carcinogenesis in male Wistar rats: dose-response analysis of tumor induction in the prostate and testes and at the injection site. Cancer Research, 48(16), 4656–4663.

    CAS  Google Scholar 

  • Wade, R. L., Jokar, A., Cydzik, K., Dershowitz, A., & Bronstein, R. (2013). Wildland fire ash and particulate distribution in adjacent residential areas. International Journal of Wildland Fire, 22(8), 1078–1082. doi:10.1071/WF12062.

    Article  CAS  Google Scholar 

  • Wang, S., & Mulligan, C. N. (2009). Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid. Chemosphere, 74(2), 274–279. doi:10.1016/j.chemosphere.2008.09.040.

    Article  CAS  Google Scholar 

  • Wang, X., He, M., Xie, J., Xi, J., & Lu, X. (2010). Heavy metal pollution of the world largest antimony mine-affected agricultural soils in Hunan province (China). Journal of Soils and Sediments, 10(5), 827–837. doi:10.1007/s11368-010-0196-4.

    Article  CAS  Google Scholar 

  • Warrick, J., Hatten, J., Pasternack, G., Gray, A., Goni, M., & Wheatcroft, R. (2012). The effects of wildfire on the sediment yield of a coastal California watershed. Geological Society of America Bulletin, 124(7–8), 1130–1146.

    Article  Google Scholar 

  • Wei, B., & Yang, L. (2010). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94(2), 99–107. doi:10.1016/j.microc.2009.09.014.

    Article  CAS  Google Scholar 

  • Weinhold, B. (2011). Field and forests in flames: vegetation, smoke and human health. Environmental Health Perspective, 119, a386–a393. doi:10.1289/ehp.119-a386.

    Article  Google Scholar 

  • Westerling, A. L., Hidalgo, H. G., Cayan, D. R., & Swetnam, T. W. (2006). Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313, 940–943. doi:10.1126/science.1128834.

    Article  CAS  Google Scholar 

  • White, J., Gardner, L., Sees, M., & Corstanje, R. (2008). The short-term effects of prescribed burning on biomass removal and the release of nitrogen and phosphorus in a treatment wetland. Journal of Environmental Quality, 37(6), 2386–2391.

    Article  CAS  Google Scholar 

  • WHO. (1996). World Health Organization. Guideline for drinking water quality—health criteria and other supporting information, Geneva, Switzerland.

  • WHO. (2008). World Health Organization. Guidelines for drinking water quality, Geneva, Switzerland.

  • WHO. (2009). World Health Organization, Global health risk: mortality and burden of diseases attributable to selected major risks. Geneva, Switzerland.

  • Wiedinmyer, C., & Friedli, H. (2007). Mercury emission estimates from fires: an initial inventory for the United States. Environmental Science and Technology, 41(23), 8092–8098. doi:10.1021/es071289o.

    Article  CAS  Google Scholar 

  • Wintz, H., Fox, T., & Vulpe, C. (2002). Functional genomics and gene regulation in biometals research. Biochemical Society Transactions, 30, 766–768.

    Article  CAS  Google Scholar 

  • Witt, E. L., Kolka, R. K., Nater, E. A., & Wickman, T. R. (2009). Forest fire effects on mercury deposition in the boreal forest. Environmental Science and Technology, 43(6), 1776–1782. doi:10.1021/es802634y.

    Article  CAS  Google Scholar 

  • Wolfe, M. F., Schwarzbach, S., & Sulaiman, R. A. (1998). Effects of mercury on wildlife: a comprehensive review. Environmental Toxicology and Chemistry, 17(2), 146–160. doi:10.1002/etc.5620170203.

    Article  CAS  Google Scholar 

  • Wolfe, M. I., Mott, J. A., Voorhees, R. E., Sewell, C. M., Paschel, D., Wood, C. M., McKinney, P. E., et al. (2004). Assessment of urinary metals following exposure to a large vegetative fire, New Mexico, 2000. Journal of Exposure Analysis and Environmental Epidemology, 14, 120–128. doi:10.1038/sj.jea.7500299.

    Article  CAS  Google Scholar 

  • Wright, D. A., & Welbourn, P. (2002). Environmental Toxicology. USA: Cambridge Environmental Chemistry series.

    Book  Google Scholar 

  • Yarmonenko, S. P. (2007). Fundamental myths or alchemy of the 21st century. Khimiya i Zhizn, 1, 52–56.

    Google Scholar 

  • Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368(2), 456–464. doi:10.1016/j.scitotenv.2006.01.016.

    Article  CAS  Google Scholar 

  • Young, R.A. (2005). Toxicity summary for cadmium, Risk Assessment Information System (RAIS). https://rais.ornl.gov/tox/profiles/cadmium.html. Accessed on 17 Sep 2016.

  • Young, D. R., & Jan, T. K. (1977). Fire fallout of metals off California. Marine Pollution Bulletin, 8(5), 109–112. doi:10.1016/0025-326X(77)90133-3.

    Article  CAS  Google Scholar 

  • Zhang, X. W., Yang, L. S., Li, Y. H., Li, H. R., Wang, W. Y., & Ye, B. X. (2012). Impacts of Pb/Zn mining and smelting on the environment and human health in China. Environmental Monitoring and Assessment, 184, 2261–2273. doi:10.1007/s10661-011-2115-6.

    Article  CAS  Google Scholar 

  • Zhang, J., Wang, L. H., Yang, J. C., Liu, H., & Dai, J. L. (2015). Health risk to residents and stimulation to inherent bacteria of various heavy metals in soil. Science of the Total Environment, 508, 29–36. doi:10.1016/j.scitotenv.2014.11.064.

    Article  CAS  Google Scholar 

  • Zhuang, P., Lu, H., Li, Z., Zou, B., & McBridge, M. B. (2014). Multiple exposure and effects assessment of heavy metals in the population near mining areas in south China. PloS One, 9(4), 1–11. doi:10.1371/journal.pone.0094484.

    CAS  Google Scholar 

  • Zillioux, E. J., Porcella, D. B., & Benoit, J. M. (1993). Mercury cycling and effects in freshwater wetland ecosystems. Environmental Toxicology and Chemistry, 12(12), 2245–2264. doi:10.1002/etc.5620121208.

    Article  CAS  Google Scholar 

  • Zukowska, J., & Biziuk, M. (2008). Methodological evaluation of method for dietary heavy metal intake. Food Science, 73(2), R21–R29. doi:10.1111/j.1750-3841.2007.00648.x.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Australian Government for the Research Training Program Scholarship and Federation University Australia for providing support to prepare this manuscript. Thanks to the anonymous reviewer, whose comments greatly improved the structure and content of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joji Abraham.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abraham, J., Dowling, K. & Florentine, S. The Unquantified Risk of Post-Fire Metal Concentration in Soil: a Review. Water Air Soil Pollut 228, 175 (2017). https://doi.org/10.1007/s11270-017-3338-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3338-0

Keywords

Profiles

  1. Singarayer Florentine