Skip to main content

Advertisement

Log in

Bioremoval of Surfactant from Laundry Wastewater in Optimized Condition by Anoxic Reactors

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Effects of ethanol and nitrate on linear alkyl benzene sulfonate (LAS) degradation were investigated using central composite design. At experimental design, removal of 99.9% was observed in batch reactors (1 L) with 9.8 to 41.2 mg L−1 of LAS. The batch reactors were kept under agitation at 120 rpm and 30 °C. Ethanol (co-substrate) and nitrate (electron acceptor) were statistically significant factors (p < 0.05) in surfactant removal. Optimal values were 97.5 and 88 mg L−1 for ethanol and nitrate, respectively. LAS removal was kinetically investigated by varying surfactant concentration while using optimal values. Batch I (27 mg L−1 LAS) exhibited greater degradation rate (KLAS) (0.054 h−1) in the presence of ethanol and nitrate. Nonetheless, in Batch II (60 mg L−1 LAS), the KLAS values decreased in those reactors probably due to inhibition by excess substrate for same concentrations of nitrate and ethanol added in reactors. As LAS concentration increased, the dominance of bacterial populations also increased, whereas diversity index decreased from 2.8 (inoculum) to 2.4 and 2.5 for reactors with both added nitrate and ethanol and those with only added ethanol, respectively. Probably, a selection of microbial populations occurred in relation to LAS concentration. The nitrate and ethanol, at able concentration, made it possible the induction of denitrifying microrganisms foward to LAS removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abboud, M. M., Khleifat, K. M., Batarseh, M., Tarawneh, K. A., Al-Mustafa, A., & Al-Madadhah, M. (2007). Different optimization conditions required for enhancing the biodegradation of linear alkylbenzosulfonate and sodium dodecyl sulfate surfactants by novel consortium of Acinetobacter calcoaceticus and Pantoea agglomerans. Enzyme and Microbial Technology, 41, 432–439.

    Article  CAS  Google Scholar 

  • Adorno, M. A. T., Hirasawa, J. S., & Varesche, M. B. A. (2014). Development and validation of Two methods to quantify volatile acids (C2-C6) by GC/FID: headspace (automatic and manual) and liquid-liquid extraction (LLE). American Journal of Analytical Chemistry, 5, 406–414.

    Article  Google Scholar 

  • Andrade, M. V. F., Corbi, J., Silva, E., Varesche, M. B. A. (2015). Influence of hydraulic retention time in degradation of anionic surfactant in fluidized bed reactor under anoxic condition. In: XIV Anaerobic Digestion, Vina del Mar., Chile.

  • Annadurai, G., Ling, L. Y., & Lee, J. F. (2008). Statistical optimization of medium components and growth conditions by response surface methodology to enhance phenol degradation by pseudomonas putida. Journal of Hazardous Materials, 151, 171–178.

    Article  CAS  Google Scholar 

  • APHA. (2005). Standard methods for examination of water and wastewater (21st ed.). Washington DC: American Public Health Association.

    Google Scholar 

  • Braga, J. K., & Varesche, M. B. A. (2014). Commercial laundry water characterisation. American Journal of Analytical Chemistry, 5, 8–16.

    Article  CAS  Google Scholar 

  • Braga, J. K., Motteran, F., Macedo, T. Z., Sakamoto, I. K., Delforno, T. P., Okada, D. Y., Silva, E. L., & Varesche, M. B. (2015). Biodegradation of linear alkylbenzene sulfonate in commercial laundry wastewater by an anaerobic fluidized bed reactor. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 50, 946–957.

    CAS  Google Scholar 

  • Delforno, T. P., Moura, A. G., Okada, D. Y., Sakamoto, I. K., & Varesche, M. B. (2015). Microbial diversity and the implications of sulfide levels in an anaerobic reactor used to remove an anionic surfactant from laundry wastewater. Bioresource Technology, 192, 37–45.

    Article  CAS  Google Scholar 

  • Dolfing, J., Zeyer, J., Binder-Eicher, P., & Schwarzenbach, R. P. (1990). Isolation and characterization of a bacterium that mineralizes toluene in the absence of molecular oxygen. Archives of Microbiology, 154, 336–341.

    Article  CAS  Google Scholar 

  • Dorer, C., Vogt, C., Neu, T. R., Stryhanyuk, H., & Richnow, H. H. (2016). Characterization of toluene and ethylbenzene biodegradation under nitrate-, iron(III)- and manganese(IV)-reducing conditions by compound-specific isotope analysis. Environmental Pollution, 211, 271e281.

    Article  Google Scholar 

  • Dou, L., Liu, X., & Ding, A. (2009). Anaerobic degradation of naphthalene by the mixed bacteria under nitrate reducing conditions. Journal of Hazardous Materials, 165, 325–331.

    Article  CAS  Google Scholar 

  • Duarte, I. C., de Franca, P., Okada, D. Y., Do Prada, P. F., & Varesche, M. B. (2015). Anaerobic degradation of anionic surfactantsby indigenous microorganisms from sedimentsof a tropical polluted river in Brazil. Revista de Biología Tropical, 63, 295–302.

    Article  Google Scholar 

  • Elsgaard, L. (2010). Toxicity of xenobiotics during sulfate, iron, and nitrate reduction in primary sewage sludge suspensions. Chemosphere, 79, 1003–1009.

    Article  CAS  Google Scholar 

  • Griffiths, R. I., Whiteley, A. S., O’donnell, A. G., & Bailey, M. J. (2000). Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Applied and Environmental Microbiology, 66, 5488–5491.

    Article  CAS  Google Scholar 

  • Guo, W. Q., Ren, N. Q., Wang, X. J., Xiang, W. S., Ding, J., You, Y., & Liu, B. F. (2009). Optimization of culture conditions for hydrogen production by Ethanoligenensharbinense B49 using response surface methodology. Bioresource Technology, 100, 1192–1196.

    Article  CAS  Google Scholar 

  • Gusmão, V., Martins, T. H., Chinalia, F., Sakamoto, I. K., & Varesche, M. B. A. (2007). BTEX and ethanol removal in horizontal-flow anaerobic immobilized biomass reactor, under denitrifying condition. Process Biochemistry, 41, 1391–1400.

    Article  Google Scholar 

  • Könnecker, G., Regelmann, J., Belanger, S., Gamon, K., & Sedlak, R. (2011). Environmental properties and aquatic hazard assessment of anionic surfactants: physico-chemical, environmental fate and ecotoxicity properties. Ecotoxicology and Environmental Safety, 74, 1445–1460.

    Article  Google Scholar 

  • Lechuga, M., Fernández-Serrano, M., Jurado, E., Núñez-Olea, J., & Ríos, F. (2016). Acute toxicity of anionic and non-ionic surfactants to aquatic organisms. Ecotoxicology and Environmental Safety, 125, 1–8.

    Article  CAS  Google Scholar 

  • Liwarska-Bizukojc, E., Scheumann, R., Drews, A., Bracklow, U., & Kraume, M. (2008). Effect of anionic and nonionic surfactants on the kinetics of the aerobic heterotrophic biodegradation of organic matter in industrial wastewater. Water Research, 42, 923–930.

    Article  CAS  Google Scholar 

  • Lu, H., Chandran, K., & Stensel, D. (2014). Microbial ecology of denitrification in biological wastewater treatment. Water Research, 64, 237–254.

    Article  CAS  Google Scholar 

  • Macedo, T. Z., Okada, D. Y., Delforno, T. P., Braga, J. K., Silva, E. L., & Varesche, M. B. (2015). The comparative advantages of ethanol and sucrose as co-substrates in the degradation of an anionic surfactant: microbial community selection. Bioprocess and Biosystems Engineering, 38, 1835–1844.

    Article  CAS  Google Scholar 

  • Maintiguer, S. I., Adorno, M. A. T., Sakamoto, I. K., & Varesche, M. B. A. (2013). Evaluation of the microbial diversity of the denitrifying bacteria in batch reactor. Brazilian Journal of Chemical Engineering, 30, 457–465.

    Article  Google Scholar 

  • Mockaitis, G., Rodrigues, J. A. D., Foresti, E., & Zaiat, M. (2012). Toxic effects of cadmium (CD2+) on anaerobic biomass: kinetic and metabolic implications. Journal of Environmental Management, 106, 75e84.

    Article  Google Scholar 

  • Mösche, M., & Meyer, U. (2002). Toxicity of linear alkylbenzene sulfonate in anaerobicdigestion:influence of exposure time. Water Research, 36, 3253–3260.

    Article  Google Scholar 

  • Mungray, A. K., & Kumar, P. (2008). Anionic surfactants in treated sewage and sludges: risk assessment to aquatic and terrestrial environments. Bioresource Technology, 99, 2919–2929.

    Article  CAS  Google Scholar 

  • Mungray, A. K., & Kumar, P. (2009). Fate of linear alkylbenzene sulfonates in the environment: a review. International Biodeterioration and Biodegradation, 63, 981–987.

    Article  CAS  Google Scholar 

  • Muyzer, G., de Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59, 695–700.

    CAS  Google Scholar 

  • Nübel, U., Engelen, B., Felske, A., Snaidr, J., Wieshuber, A., Amann, R. I., Ludwig, W., & Backhaus, H. (1996). Sequence heterogeneities of genes encoding 16S rRNAs in paenibacilluspolymyxa detected by temperature gradient gel electrophoresis. Journal of Bacteriology, 178, 5636–5643.

    Article  Google Scholar 

  • Okada, D. Y., Delforno, T. P., Esteves, A. S., Polizel, J., Hirawasa, J. S., Duarte, I. C., & Varesche, M. B. (2013). Influence of volatile fatty acid concentration stability on anaerobic degradation of linear alkylbenzene sulfonate. Journal of Environmental Management, 128, 169e172.

    Article  Google Scholar 

  • Oliveira, L. L., Costa, R. B., Sakamoto, I. K., Duarte, I. C. S., Silva, E. L., Varesche, M. B. A. (2013). Las degradation in a fluidized bed reactor and phylogenetic characterization of the biofilm. Brazilian Journal of Chemical Engineering, 30(3), 521–529.

    Article  CAS  Google Scholar 

  • Patil, S. S., & Jena, H. M. (2015). Statistical optimization of phenol degradation by bacillus pumilus OS1 using placktett-bruman design and response surface methodology. Arabian Journal for Science and Engineering, 40, 2141–2151.

    Article  CAS  Google Scholar 

  • Santos, S. G., Varesche, M. B. A., Zaiat, M., & Foresti, E. (2004). Comparison of methanol, ethanol, and methane as electron donors for denitrification. Environmental Engineering Science, 21, 313–320.

    Article  Google Scholar 

  • Shen, J., Chen, Y., Wu, H., Liu, X., Sun, X., Li, J., & Wang, J. (2015). Enhanced pyridine biodegradation under anoxic condition: the key role of nitrate as the electron acceptor. Chemical Engineering Journal, 277, 140–149.

    Article  CAS  Google Scholar 

  • Singh, H. (2006). Mycorremediation: fungal biorremediation (p. 572). Hoboken: Wiley.

    Book  Google Scholar 

  • Sinha, S., Chattopadhyay, P., Pan, I., Chatterjee, S., Chanda, P., Bandyopadhyay, D., & Sen, S. K. (2009). Microbial transformation of xenobiotics for environmental bioremediation. African Journal of Biotechnology, 8, 6016–6027.

    Article  CAS  Google Scholar 

  • Terechova, E. L., Zhang, G., Chen, J., Sosnina, N. A., & Yang, F. (2014). Combined chemical coagulation–flocculation/ultraviolet photolysis treatment for anionic surfactants in laundry wastewater. Journal of Environmental Chemical Engineering, 2, 2111–2119.

    Article  CAS  Google Scholar 

  • Xu, M., Zhang, Q., Xia, C., Zhong, Y., Sun, G., Guo, J., Yuan, T., Zhou, J., & He, Z. (2014). Elevated nitrate enriches microbial functional genes for potential bioremediation of complexly contaminated sediments. ISME Journal, 8, 1932–1944.

    Article  CAS  Google Scholar 

  • Zeyer, J., & Kearney, P. C. (1982). Microbial degradation of para- chloroaniline as sole carbon and nitrogen source. Pesticide Biochemistry and Physiology, 17, 215–223.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Laboratório de Processos Biológicos-LPB/EESC/USP São Paulo, Research Foundation (FAPESP) (no. 2013/19367−1) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcus Vinicius Freire Andrade or Maria Bernadete Amâncio Varesche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade, M.V.F., Sakamoto, I.K., de Oliveira Paranhos, A.G. et al. Bioremoval of Surfactant from Laundry Wastewater in Optimized Condition by Anoxic Reactors. Water Air Soil Pollut 228, 165 (2017). https://doi.org/10.1007/s11270-017-3293-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3293-9

Keywords

Navigation