Skip to main content
Log in

The Critical Levels of Atmospheric Ammonia in a Mediterranean Holm-Oak Forest in North-Eastern Spain

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Despite recent regulations, atmospheric ammonia (NH3) emissions have not changed much over the last decades and excessive nitrogen remains as one of the major drivers for biodiversity changes. To prevent deleterious effects on species and ecosystems, it is very important to establish safety thresholds, such as those defined by the Critical Level (CLE) concept, “the concentration above which direct adverse effects on receptors may occur, based on present knowledge.” Empirical critical levels of atmospheric NH3 have mainly been reported for temperate forests and there is a lack of information for Mediterranean forests. Here, we provide a case study on NH3 CLEs for a typical Mediterranean ecosystem, the holm-oak (Quercus ilex) forest. To derive the CLE value, we measured NH3 concentrations for 1 year at a distance gradient in the forest surrounding a point source (cattle farm) and used diversity changes of lichen functional groups to indicate the onset of adverse effects. We estimate a NH3 CLE threshold of 2.6 μg m−3, a value that is higher than that reported in other Mediterranean ecosystems and suggests that the site has been already impacted by NH3 pollution in the past. In a more general context, this study confirms the validity of lichen functional groups to derive CLEs in Mediterranean forests and woodlands and contribute to the body of knowledge regarding the impacts of NH3 on ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguillaume, L., Rodrigo, A., & Avila, A. (2016). Long-term effects of changing atmospheric pollution on throughfall, bulk deposition and streamwaters in a Mediterranean forest. Science of the Total Environment, 544, 919–928.

    Article  CAS  Google Scholar 

  • Aguillaume, L., García-Gómez, H., Izquieta, S., Alonso, R., Elustondo, D., Santamaría, J. M., & Avila, A. (2017). Estimating dry deposition and canopy exchange in Mediterranean holm-oak forests with a canopy budget model: a focus on N deposition. Atmospheric Environment, 152, 191–200.

    Article  CAS  Google Scholar 

  • Asman, W. A., Sutton, M. A., & Schjørring, J. K. (1998). Ammonia: emission, atmospheric transport and deposition. New Phytologist, 139, 27–48.

    Article  CAS  Google Scholar 

  • Asta, J., Erhardt, W., Ferretti, M., Fornasier, F., Kirschbaum, U., Nimis, P., Purvis, O., Pirintsos, S., Scheidegger, C., Van Haluwyn, C. (2002). European guideline for mapping lichen diversity as an indicator of environmental stress. British Lichen Society.

  • Behera, S. N., Sharma, M., Aneja, V. P., & Balasubramanian, R. (2013). Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environmental Science and Pollution Research, 20, 8092–8131.

    Article  CAS  Google Scholar 

  • Bell, M. L., Dominici, F., Ebisu, K., Zeger, S. L., & Samet, J. M. (2007). Spatial and temporal variation in PM2. 5 chemical composition in the United States for health effects studies. Environmental Health Perspectives, 15, 989–995.

    Article  Google Scholar 

  • Cape, J., Van der Eerden, L., Sheppard, L., Leith, I., & Sutton, M. (2009). Evidence for changing the critical level for ammonia. Environmental Pollution, 157, 1033–1037.

    Article  CAS  Google Scholar 

  • Fenn, M., Jovan, S., Yuan, F., Geiser, L., Meixner, T., & Gimeno, B. (2008). Empirical and simulated critical loads for nitrogen deposition in California mixed conifer forests. Environmental Pollution, 155, 492–511.

    Article  CAS  Google Scholar 

  • Finlayson-Pitts, B. J., & Pitts, J. N., Jr. (1999). Chemistry of the upper and lower atmosphere: theory, experiments, and applications, Academic Press.

  • Fondazione Salvatore Maugeri. (2006). Instruction manual for Radiello sampler. Edition 01/2006. http//www.radiello.com.

  • Frati, L., Santoni, S., Nicolardi, V., Gaggi, C., Brunialti, G., Guttova, A., Gaudino, S., Pati, A., Pirintsos, S., & Loppi, S. (2007). Lichen biomonitoring of ammonia emission and nitrogen deposition around a pig stockfarm. Environmental Pollution, 146, 311–316.

    Article  CAS  Google Scholar 

  • Galloway, J. N., & Cowling, E. B. (2002). Reactive nitrogen and the world: 200 years of change. Ambio: A Journal of the Human Environment, 31, 64–71.

    Article  Google Scholar 

  • Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W., Cowling, E. B., & Cosby, B. J. (2003). The nitrogen cascade. Bioscience, 53, 341–356.

    Article  Google Scholar 

  • García-Gómez, H., Aguillaume, L., Izquieta, S., Valiño, F., Avila, A., Elustondo, D., Santamaría, J. M., Alastuey, A., Calvete-Sogo, H., González-Fernández, I., & Alonso, R. (2016). Atmospheric pollutants in peri-urban forests of Quercus ilex: evidence of pollution abatement and threats for vegetation. Environmental Science and Pollution Research, 23, 6499–6413.

    Article  Google Scholar 

  • Geiser, L. H., & Neitlich, P. N. (2007). Air pollution and climate gradients in western Oregon and Washington indicated by epiphytic macrolichens. Environmental Pollution, 145, 203–218.

    Article  CAS  Google Scholar 

  • Geiser, L. H., Jovan, S. E., Glavich, D. A., & Porter, M. K. (2010). Lichen-based critical loads for atmospheric nitrogen deposition in Western Oregon and Washington forests, USA. Environmental Pollution, 158, 2412–2421.

    Article  CAS  Google Scholar 

  • Giordani, P. (2007). Is the diversity of epiphytic lichens a reliable indicator of air pollution? A case study from Italy. Environmental Pollution, 146, 317–323.

    Article  CAS  Google Scholar 

  • Giordani, P., Calatayud, V., Stofer, S., Seidling, W., Granke, O., & Fischer, R. (2014). Detecting the nitrogen critical loads on European forests by means of epiphytic lichens. A signal-to-noise evaluation. Forest Ecology and Management, 311, 29–40.

    Article  Google Scholar 

  • Hallsworth, S., Dore, A., Bealey, W., Dragosits, U., Vieno, M., Hellsten, S., Tang, Y., & Sutton, M. (2010). The role of indicator choice in quantifying the threat of atmospheric ammonia to the ‘Natura 2000’ network. Environmental Science & Policy, 13, 671–687.

    Article  CAS  Google Scholar 

  • Jovan, S. (2008). Lichen bioindication of biodiversity, air quality, and climate: baseline results from monitoring in Washington, Oregon, and California.

  • Jovan, S., Riddell, J., Padgett, P. E., & Nash, T. H. (2012). Eutrophic lichens respond to multiple forms of N: implications for critical levels and critical loads research. Ecological Applications, 22, 1910–1922.

    Article  Google Scholar 

  • Kumar, R., Gupta, A., Kumari, K. M., & Srivastava, S. (2004). Simultaneous measurements of SO 2, NO 2, HNO 3 and NH 3: seasonal and spatial variations. Current Science, 87, 1108–1115.

    CAS  Google Scholar 

  • Longán, A. (2006). Els líquens epífits com a indicadors de l’estat de conservació del bosc mediterrani: proposta metodològica per als alzinars de Catalunya, Institut d’Estudis Catalans.

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.

    Article  CAS  Google Scholar 

  • Nimis, P. L., & Martellos, S. (2008). The information system on Italian lichens http://dbiodbs.univ.trieste.it/.

  • Ochoa-Hueso, R., Allen, E. B., Branquinho, C., Cruz, C., Dias, T., Fenn, M. E., Manrique, E., Pérez-Corona, M. E., Sheppard, L. J., & Stock, W. D. (2011). Nitrogen deposition effects on Mediterranean-type ecosystems: an ecological assessment. Environmental Pollution, 159, 2265–2279.

    Article  CAS  Google Scholar 

  • Otero, N., Torrentó, C., Soler, A., Menció, A., & Mas-Pla, J. (2009). Monitoring groundwater nitrate attenuation in a regional system coupling hydrogeology with multi-isotopic methods: the case of Plana de Vic (Osona, Spain). Agriculture, Ecosystems & Environment, 133, 103–113.

    Article  CAS  Google Scholar 

  • Phoenix, G. K., Hicks, W. K., Cinderby, S., Kuylenstierna, J. C., Stock, W. D., Dentener, F. J., Giller, K. E., Austin, A. T., Lefroy, R. D., & Gimeno, B. S. (2006). Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Global Change Biology, 12, 470–476.

    Article  Google Scholar 

  • Pinho, P., Augusto, S., Martins-Loução, M. A., Pereira, M. J., Soares, A., Máguas, C., & Branquinho, C. (2008). Causes of change in nitrophytic and oligotrophic lichen species in a Mediterranean climate: impact of land cover and atmospheric pollutants. Environmental Pollution, 154, 380–389.

    Article  CAS  Google Scholar 

  • Pinho, P., Branquinho, C., Cruz, C., Tang, Y. S., Dias, T., Rosa, A. P., Máguas, C., Martins-Loução, M.-A., & Sutton, M. A. (2009). Assessment of critical levels of atmospheric ammonia for lichen diversity in cork-oak woodland. Atmospheric ammonia (pp. 109–119). Portugal: Springer.

    Google Scholar 

  • Pinho, P., Dias, T., Cruz, C., Sim Tang, Y., Sutton, M. A., Martins‐Loução, M. A., Maguas, C., & Branquinho, C. (2011). Using lichen functional diversity to assess the effects of atmospheric ammonia in Mediterranean woodlands. Journal of Applied Ecology, 48, 1107–1116.

    Article  CAS  Google Scholar 

  • Pinho, P., Theobald, M., Dias, T., Tang, Y., Cruz, C., Martins-Loução, M., Máguas, C., Sutton, M., & Branquinho, C. (2012). Critical loads of nitrogen deposition and critical levels of atmospheric ammonia for semi-natural Mediterranean evergreen woodlands. Biogeosciences, 9, 1205–1215.

    Article  CAS  Google Scholar 

  • Pinho, P., Llop, E., Ribeiro, M., Cruz, C., Soares, A., Pereira, M., & Branquinho, C. (2014a). Tools for determining critical levels of atmospheric ammonia under the influence of multiple disturbances. Environmental Pollution, 188, 88–93.

    Article  CAS  Google Scholar 

  • Pinho, P., Martins-Loução, M.-A., Máguas, C., Branquinho, C. (2014b). Calibrating total nitrogen concentration in lichens with emissions of reduced nitrogen at the regional scale. Nitrogen deposition, critical loads and biodiversity, Springer, pp. 217–227.

  • Pitcairn, C., Leith, I., Sheppard, L., Sutton, M., Fowler, D., Munro, R., Tang, S., & Wilson, D. (1998). The relationship between nitrogen deposition, species composition and foliar nitrogen concentrations in woodland flora in the vicinity of livestock farms. Environmental Pollution, 102, 41–48.

    Article  CAS  Google Scholar 

  • Posthumus, A. (1988). Critical levels for effects of ammonia and ammonium. Proceedings of the Bad Harzburg Workshop, pp. 117–127.

  • Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin, E. F., Lenton, T. M., Scheffer, M., Folke, C., & Schellnhuber, H. J. (2009). A safe operating space for humanity. Nature, 461, 472–475.

    Article  Google Scholar 

  • Sanz, M., Montalvo, G., Monter, C., Sanz, F., Illescas, P., Piñeiro, C., Bigeriego, M. (2007). Ammonia concentration around two poultry farms in the central plateau of Spain. Ammonia Emissions in Agriculture, 370.

  • Sommer, S. G., Olesen, J. E., & Christensen, B. T. (1991). Effects of temperature, wind speed and air humidity on ammonia volatilization from surface applied cattle slurry. The Journal of Agricultural Science, 117, 91–100.

    Article  Google Scholar 

  • Sparrius, L. B. (2007). Response of epiphytic lichen communities to decreasing ammonia air concentrations in a moderately polluted area of the Netherlands. Environmental Pollution, 146, 375–379.

    Article  CAS  Google Scholar 

  • Svoboda, D. (2007). Evaluation of the European method for mapping lichen diversity (LDV) as an indicator of environmental stress in the Czech Republic. Biologia, 62, 424–431.

    Article  Google Scholar 

  • Tang, Y. S., Cape, J. N., Sutton, M. A. (2001). Development and types of passive samplers for monitoring atmospheric NO2 and NH3 concentrations. The Scientific World Journal 1.

  • Van Dobben, H., & Ter Braak, C. (1998). Effects of atmospheric NH3 on epiphytic lichens in the Netherlands: the pitfalls of biological monitoring. Atmospheric Environment, 32, 551–557.

    Article  Google Scholar 

  • Van Herk, C. (1999). Mapping of ammonia pollution with epiphytic lichens in the Netherlands. The Lichenologist, 31, 9–20.

    Article  Google Scholar 

  • Van Herk, C. (2001). Bark pH and susceptibility to toxic air pollutants as independent causes of changes in epiphytic lichen composition in space and time. The Lichenologist, 33, 419–442.

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from the Spanish Government projects CGL2009-13188-C03-01 and MONTES-Consolider CSD-2008-00040 is fully acknowledged. PM would like to thank COST Action FP0903 for financial support of a short-term scientific mission through contract ECOST-STSM-FP0903-120912-019761. PM, PP, and CB acknowledge FCT-MEC support by contracts BD/51419/2011, BPD/75425/2010, and Investigador FCT. The comments of one reviewer are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Avila.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguillaume, L., Avila, A., Pinho, P. et al. The Critical Levels of Atmospheric Ammonia in a Mediterranean Holm-Oak Forest in North-Eastern Spain. Water Air Soil Pollut 228, 93 (2017). https://doi.org/10.1007/s11270-017-3286-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3286-8

Keywords

Navigation