The Critical Levels of Atmospheric Ammonia in a Mediterranean Holm-Oak Forest in North-Eastern Spain

  • Laura Aguillaume
  • Anna AvilaEmail author
  • Pedro Pinho
  • Paula Matos
  • Esteve Llop
  • Cristina Branquinho


Despite recent regulations, atmospheric ammonia (NH3) emissions have not changed much over the last decades and excessive nitrogen remains as one of the major drivers for biodiversity changes. To prevent deleterious effects on species and ecosystems, it is very important to establish safety thresholds, such as those defined by the Critical Level (CLE) concept, “the concentration above which direct adverse effects on receptors may occur, based on present knowledge.” Empirical critical levels of atmospheric NH3 have mainly been reported for temperate forests and there is a lack of information for Mediterranean forests. Here, we provide a case study on NH3 CLEs for a typical Mediterranean ecosystem, the holm-oak (Quercus ilex) forest. To derive the CLE value, we measured NH3 concentrations for 1 year at a distance gradient in the forest surrounding a point source (cattle farm) and used diversity changes of lichen functional groups to indicate the onset of adverse effects. We estimate a NH3 CLE threshold of 2.6 μg m−3, a value that is higher than that reported in other Mediterranean ecosystems and suggests that the site has been already impacted by NH3 pollution in the past. In a more general context, this study confirms the validity of lichen functional groups to derive CLEs in Mediterranean forests and woodlands and contribute to the body of knowledge regarding the impacts of NH3 on ecosystems.


Critical levels Ammonia Ecological indicators Lichen functional groups Mediterranean Quercus ilex forest N pollution 



The financial support from the Spanish Government projects CGL2009-13188-C03-01 and MONTES-Consolider CSD-2008-00040 is fully acknowledged. PM would like to thank COST Action FP0903 for financial support of a short-term scientific mission through contract ECOST-STSM-FP0903-120912-019761. PM, PP, and CB acknowledge FCT-MEC support by contracts BD/51419/2011, BPD/75425/2010, and Investigador FCT. The comments of one reviewer are greatly appreciated.


  1. Aguillaume, L., Rodrigo, A., & Avila, A. (2016). Long-term effects of changing atmospheric pollution on throughfall, bulk deposition and streamwaters in a Mediterranean forest. Science of the Total Environment, 544, 919–928.CrossRefGoogle Scholar
  2. Aguillaume, L., García-Gómez, H., Izquieta, S., Alonso, R., Elustondo, D., Santamaría, J. M., & Avila, A. (2017). Estimating dry deposition and canopy exchange in Mediterranean holm-oak forests with a canopy budget model: a focus on N deposition. Atmospheric Environment, 152, 191–200.CrossRefGoogle Scholar
  3. Asman, W. A., Sutton, M. A., & Schjørring, J. K. (1998). Ammonia: emission, atmospheric transport and deposition. New Phytologist, 139, 27–48.CrossRefGoogle Scholar
  4. Asta, J., Erhardt, W., Ferretti, M., Fornasier, F., Kirschbaum, U., Nimis, P., Purvis, O., Pirintsos, S., Scheidegger, C., Van Haluwyn, C. (2002). European guideline for mapping lichen diversity as an indicator of environmental stress. British Lichen Society.Google Scholar
  5. Behera, S. N., Sharma, M., Aneja, V. P., & Balasubramanian, R. (2013). Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environmental Science and Pollution Research, 20, 8092–8131.CrossRefGoogle Scholar
  6. Bell, M. L., Dominici, F., Ebisu, K., Zeger, S. L., & Samet, J. M. (2007). Spatial and temporal variation in PM2. 5 chemical composition in the United States for health effects studies. Environmental Health Perspectives, 15, 989–995.CrossRefGoogle Scholar
  7. Cape, J., Van der Eerden, L., Sheppard, L., Leith, I., & Sutton, M. (2009). Evidence for changing the critical level for ammonia. Environmental Pollution, 157, 1033–1037.CrossRefGoogle Scholar
  8. Fenn, M., Jovan, S., Yuan, F., Geiser, L., Meixner, T., & Gimeno, B. (2008). Empirical and simulated critical loads for nitrogen deposition in California mixed conifer forests. Environmental Pollution, 155, 492–511.CrossRefGoogle Scholar
  9. Finlayson-Pitts, B. J., & Pitts, J. N., Jr. (1999). Chemistry of the upper and lower atmosphere: theory, experiments, and applications, Academic Press.Google Scholar
  10. Fondazione Salvatore Maugeri. (2006). Instruction manual for Radiello sampler. Edition 01/2006. http//
  11. Frati, L., Santoni, S., Nicolardi, V., Gaggi, C., Brunialti, G., Guttova, A., Gaudino, S., Pati, A., Pirintsos, S., & Loppi, S. (2007). Lichen biomonitoring of ammonia emission and nitrogen deposition around a pig stockfarm. Environmental Pollution, 146, 311–316.CrossRefGoogle Scholar
  12. Galloway, J. N., & Cowling, E. B. (2002). Reactive nitrogen and the world: 200 years of change. Ambio: A Journal of the Human Environment, 31, 64–71.CrossRefGoogle Scholar
  13. Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W., Cowling, E. B., & Cosby, B. J. (2003). The nitrogen cascade. Bioscience, 53, 341–356.CrossRefGoogle Scholar
  14. García-Gómez, H., Aguillaume, L., Izquieta, S., Valiño, F., Avila, A., Elustondo, D., Santamaría, J. M., Alastuey, A., Calvete-Sogo, H., González-Fernández, I., & Alonso, R. (2016). Atmospheric pollutants in peri-urban forests of Quercus ilex: evidence of pollution abatement and threats for vegetation. Environmental Science and Pollution Research, 23, 6499–6413.CrossRefGoogle Scholar
  15. Geiser, L. H., & Neitlich, P. N. (2007). Air pollution and climate gradients in western Oregon and Washington indicated by epiphytic macrolichens. Environmental Pollution, 145, 203–218.CrossRefGoogle Scholar
  16. Geiser, L. H., Jovan, S. E., Glavich, D. A., & Porter, M. K. (2010). Lichen-based critical loads for atmospheric nitrogen deposition in Western Oregon and Washington forests, USA. Environmental Pollution, 158, 2412–2421.CrossRefGoogle Scholar
  17. Giordani, P. (2007). Is the diversity of epiphytic lichens a reliable indicator of air pollution? A case study from Italy. Environmental Pollution, 146, 317–323.CrossRefGoogle Scholar
  18. Giordani, P., Calatayud, V., Stofer, S., Seidling, W., Granke, O., & Fischer, R. (2014). Detecting the nitrogen critical loads on European forests by means of epiphytic lichens. A signal-to-noise evaluation. Forest Ecology and Management, 311, 29–40.CrossRefGoogle Scholar
  19. Hallsworth, S., Dore, A., Bealey, W., Dragosits, U., Vieno, M., Hellsten, S., Tang, Y., & Sutton, M. (2010). The role of indicator choice in quantifying the threat of atmospheric ammonia to the ‘Natura 2000’ network. Environmental Science & Policy, 13, 671–687.CrossRefGoogle Scholar
  20. Jovan, S. (2008). Lichen bioindication of biodiversity, air quality, and climate: baseline results from monitoring in Washington, Oregon, and California.Google Scholar
  21. Jovan, S., Riddell, J., Padgett, P. E., & Nash, T. H. (2012). Eutrophic lichens respond to multiple forms of N: implications for critical levels and critical loads research. Ecological Applications, 22, 1910–1922.CrossRefGoogle Scholar
  22. Kumar, R., Gupta, A., Kumari, K. M., & Srivastava, S. (2004). Simultaneous measurements of SO 2, NO 2, HNO 3 and NH 3: seasonal and spatial variations. Current Science, 87, 1108–1115.Google Scholar
  23. Longán, A. (2006). Els líquens epífits com a indicadors de l’estat de conservació del bosc mediterrani: proposta metodològica per als alzinars de Catalunya, Institut d’Estudis Catalans.Google Scholar
  24. Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.CrossRefGoogle Scholar
  25. Nimis, P. L., & Martellos, S. (2008). The information system on Italian lichens
  26. Ochoa-Hueso, R., Allen, E. B., Branquinho, C., Cruz, C., Dias, T., Fenn, M. E., Manrique, E., Pérez-Corona, M. E., Sheppard, L. J., & Stock, W. D. (2011). Nitrogen deposition effects on Mediterranean-type ecosystems: an ecological assessment. Environmental Pollution, 159, 2265–2279.CrossRefGoogle Scholar
  27. Otero, N., Torrentó, C., Soler, A., Menció, A., & Mas-Pla, J. (2009). Monitoring groundwater nitrate attenuation in a regional system coupling hydrogeology with multi-isotopic methods: the case of Plana de Vic (Osona, Spain). Agriculture, Ecosystems & Environment, 133, 103–113.CrossRefGoogle Scholar
  28. Phoenix, G. K., Hicks, W. K., Cinderby, S., Kuylenstierna, J. C., Stock, W. D., Dentener, F. J., Giller, K. E., Austin, A. T., Lefroy, R. D., & Gimeno, B. S. (2006). Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Global Change Biology, 12, 470–476.CrossRefGoogle Scholar
  29. Pinho, P., Augusto, S., Martins-Loução, M. A., Pereira, M. J., Soares, A., Máguas, C., & Branquinho, C. (2008). Causes of change in nitrophytic and oligotrophic lichen species in a Mediterranean climate: impact of land cover and atmospheric pollutants. Environmental Pollution, 154, 380–389.CrossRefGoogle Scholar
  30. Pinho, P., Branquinho, C., Cruz, C., Tang, Y. S., Dias, T., Rosa, A. P., Máguas, C., Martins-Loução, M.-A., & Sutton, M. A. (2009). Assessment of critical levels of atmospheric ammonia for lichen diversity in cork-oak woodland. Atmospheric ammonia (pp. 109–119). Portugal: Springer.Google Scholar
  31. Pinho, P., Dias, T., Cruz, C., Sim Tang, Y., Sutton, M. A., Martins‐Loução, M. A., Maguas, C., & Branquinho, C. (2011). Using lichen functional diversity to assess the effects of atmospheric ammonia in Mediterranean woodlands. Journal of Applied Ecology, 48, 1107–1116.CrossRefGoogle Scholar
  32. Pinho, P., Theobald, M., Dias, T., Tang, Y., Cruz, C., Martins-Loução, M., Máguas, C., Sutton, M., & Branquinho, C. (2012). Critical loads of nitrogen deposition and critical levels of atmospheric ammonia for semi-natural Mediterranean evergreen woodlands. Biogeosciences, 9, 1205–1215.CrossRefGoogle Scholar
  33. Pinho, P., Llop, E., Ribeiro, M., Cruz, C., Soares, A., Pereira, M., & Branquinho, C. (2014a). Tools for determining critical levels of atmospheric ammonia under the influence of multiple disturbances. Environmental Pollution, 188, 88–93.CrossRefGoogle Scholar
  34. Pinho, P., Martins-Loução, M.-A., Máguas, C., Branquinho, C. (2014b). Calibrating total nitrogen concentration in lichens with emissions of reduced nitrogen at the regional scale. Nitrogen deposition, critical loads and biodiversity, Springer, pp. 217–227.Google Scholar
  35. Pitcairn, C., Leith, I., Sheppard, L., Sutton, M., Fowler, D., Munro, R., Tang, S., & Wilson, D. (1998). The relationship between nitrogen deposition, species composition and foliar nitrogen concentrations in woodland flora in the vicinity of livestock farms. Environmental Pollution, 102, 41–48.CrossRefGoogle Scholar
  36. Posthumus, A. (1988). Critical levels for effects of ammonia and ammonium. Proceedings of the Bad Harzburg Workshop, pp. 117–127.Google Scholar
  37. Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin, E. F., Lenton, T. M., Scheffer, M., Folke, C., & Schellnhuber, H. J. (2009). A safe operating space for humanity. Nature, 461, 472–475.CrossRefGoogle Scholar
  38. Sanz, M., Montalvo, G., Monter, C., Sanz, F., Illescas, P., Piñeiro, C., Bigeriego, M. (2007). Ammonia concentration around two poultry farms in the central plateau of Spain. Ammonia Emissions in Agriculture, 370.Google Scholar
  39. Sommer, S. G., Olesen, J. E., & Christensen, B. T. (1991). Effects of temperature, wind speed and air humidity on ammonia volatilization from surface applied cattle slurry. The Journal of Agricultural Science, 117, 91–100.CrossRefGoogle Scholar
  40. Sparrius, L. B. (2007). Response of epiphytic lichen communities to decreasing ammonia air concentrations in a moderately polluted area of the Netherlands. Environmental Pollution, 146, 375–379.CrossRefGoogle Scholar
  41. Svoboda, D. (2007). Evaluation of the European method for mapping lichen diversity (LDV) as an indicator of environmental stress in the Czech Republic. Biologia, 62, 424–431.CrossRefGoogle Scholar
  42. Tang, Y. S., Cape, J. N., Sutton, M. A. (2001). Development and types of passive samplers for monitoring atmospheric NO2 and NH3 concentrations. The Scientific World Journal 1.Google Scholar
  43. Van Dobben, H., & Ter Braak, C. (1998). Effects of atmospheric NH3 on epiphytic lichens in the Netherlands: the pitfalls of biological monitoring. Atmospheric Environment, 32, 551–557.CrossRefGoogle Scholar
  44. Van Herk, C. (1999). Mapping of ammonia pollution with epiphytic lichens in the Netherlands. The Lichenologist, 31, 9–20.CrossRefGoogle Scholar
  45. Van Herk, C. (2001). Bark pH and susceptibility to toxic air pollutants as independent causes of changes in epiphytic lichen composition in space and time. The Lichenologist, 33, 419–442.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Laura Aguillaume
    • 1
  • Anna Avila
    • 1
    • 2
    Email author
  • Pedro Pinho
    • 3
    • 4
  • Paula Matos
    • 3
  • Esteve Llop
    • 5
  • Cristina Branquinho
    • 3
  1. 1.CREAF, Centre for Ecological Research and Forestry ApplicationsCerdanyola del VallèsSpain
  2. 2.Universitat Autònoma de BarcelonaCerdanyola del VallèsSpain
  3. 3.cE3c, Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  4. 4.Cerena, Centre for Natural Resources and the Environment, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
  5. 5.Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals-Botànica i MicologiaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations