Skip to main content

Surfactant-Assisted Sono-breakage of Wastewater Particles for Improved UV Disinfection

Abstract

Ultraviolet (UV) disinfection of wastewater is adversely affected by the presence of particle-associated bacteria. Earlier studies have shown that disrupting these particles by ultrasonic cavitation can enhance the UV disinfection of wastewater. However, the use of ultrasound as a pretreatment technology for UV disinfection is hindered by its high energy demand. In this work, the addition of several organic solutes, including 1-propanol, 1-hexanol, and pentyl acetate, to promote the cavitation process and to improve the breakage of wastewater particles was examined. It was found that the enhancement in the cavitation and the breakage efficiency of particles was positively related to the hydrophobicity of surfactant. In addition, particle breakage was a function of the concentration of surfactant as well as the delivered ultrasound energy density. Sonication of wastewater samples containing small amounts of 1-hexanol (16 mM) or pentyl acetate (12 mM) increased the UV disinfection efficiency and decreased the required UV dose to achieve the disinfection target by a factor of more than 2.5.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Abdul-Halim, N., & Davey, K. R. (2016). Impact of suspended solids on Fr 13 failure of UV irradiation for inactivation of Escherichia coli in potable water production with turbulent flow in an annular reactor. Chemical Engineering Science, 143, 55–63.

    Article  CAS  Google Scholar 

  • American Water Works Association (AWWA). (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington DC: APHA.

    Google Scholar 

  • Ashokkumar, M., & Grieser, F. (2007). The effect of surface active solutes on bubbles in an acoustic field. Physical Chemistry Chemical Physics, 9(42), 5631–5643.

    Article  CAS  Google Scholar 

  • Ayyildiz, O., Sanik, S., & Ileri, B. (2010). Effect of ultrasonic pretreatment on chlorine dioxide disinfection efficiency. Ultrasonics Sonochemistry, 18(2), 683–688.

    Article  Google Scholar 

  • Azimi, Y., Allen, D. G., & Farnood, R. (2012). Kinetics of UV inactivation of wastewater bioflocs. Water Research, 46(12), 3827–3836.

    Article  CAS  Google Scholar 

  • Bolton, J. R., & Linden, K. G. (2003). Standardization of methods for fluence (UV dose) determination in bench-scale UV experiments. Journal of Environmental Engineering, 129(3), 209–215.

    Article  CAS  Google Scholar 

  • Bystryak, S., Santockyte, R., & Peshkovsky, A. S. (2015). Cell disruption of S. cerevisiae by scalable high-intensity ultrasound. Biochemical Engineering Journal, 99, 99–106.

    Article  CAS  Google Scholar 

  • De Lima Isaac, R., Dos Santos, L. U., Tosetto, M. S., Franco, R. M. B., & Guimaraes, J. R. (2014). Urban water reuse: microbial pathogens control by direct filtration and ultraviolet disinfection. Journal of Water and Health, 12(3), 465–473.

    Article  Google Scholar 

  • Emerick, R., Loge, F., Thompson, D., & Darby, J. (1999). Factors influencing ultraviolet disinfection performance part II: association of coliform bacteria with wastewater particles. Water Environment Research, 71(6), 1178–1187.

    Article  CAS  Google Scholar 

  • Fukushima, S., Takahashi, M., & Yamaguchi, M. (1976). Effect of cetostearyl alcohol on stabilization of oil-in-water emulsion. I. Difference in the effect by mixing cetyl alcohol with stearyl alcohol. Journal of Colloid and Interface Science, 57(2), 201–206.

    Article  CAS  Google Scholar 

  • Gehr, R., & Wright, H. (1998). UV disinfection of wastewater coagulated with ferric chloride: recalcitrance and fouling problems. Water Science and Technology, 38(3), 15–23.

    Article  CAS  Google Scholar 

  • Gibson, J. H., Yong, D. H. N., Farnood, R. R., & Seto, P. (2008). A literature review of ultrasound technology and its application in wastewater disinfection. Water Quality Research Journal of Canada, 43(1), 23–35.

    CAS  Google Scholar 

  • Gibson, J. H., Hon, H., Farnood, R., Droppo, I. G., & Seto, P. (2009). Effects of ultrasound on suspended particles in municipal wastewater. Water Research, 43(8), 2251–2259.

    Article  CAS  Google Scholar 

  • Guo, H., & Hu, J. (2012). Effect of hybrid coagulation-membrane filtration on downstream UV disinfection. Desalination, 290, 115–127.

    Article  CAS  Google Scholar 

  • Henglein, A. (1987). Sonochemistry: historical developments and modern aspects. Ultrasonics, 25(1), 6–16.

    Article  CAS  Google Scholar 

  • Hulsmans, A., Joris, K., Lambert, N., Rediers, H., Declerck, P., Delaedt, Y., Ollevier, F., & Liers, S. (2010). Evaluation of process parameters of ultrasonic treatment of bacterial suspensions in a pilot scale water disinfection system. Ultrasonics Sonochemistry, 17(6), 1004–1009.

    Article  CAS  Google Scholar 

  • Inoue, M., Masuda, Y., Okada, F., Sakurai, A., Takahashi, I., & Sakaibara, M. (2008). Degradation of bisphenol A using sonochemical reactions. Water Research, 42(6–7), 1379–1386.

    Article  CAS  Google Scholar 

  • Kormann, C., Bahnemann, D. W., & Hoffmann, M. R. (1988). Photocatalytic production of H2O2 and organic peroxides in aqueous suspensions of TiO2, ZnO, and desert sand. Environmental Science & Technology, 22(7), 798–806.

    Article  CAS  Google Scholar 

  • Laine, S., Poujol, T., Dufay, S., Baron, J., & Robert, P. (1998). Treatment of storm water to bathing water quality by dissolved air flotation, filtration and ultraviolet disinfection. Water Science and Technology, 38(10), 99–105.

    Article  CAS  Google Scholar 

  • Lee, J., Kentish, S., Matula, T. J., & Ashokkumar, M. (2005). Effect of surfactants on inertial cavitation activity in a pulsed acoustic field. Journal of Physical Chemistry B, 109(35), 16860–16865.

    Article  CAS  Google Scholar 

  • Li, X., Peng, Y., He, Y., Jia, F., Wang, S., & Guo, S. (2016). Applying low frequency ultrasound on different biological nitrogen activated sludge types: an analysis of particle size reduction, soluble chemical oxygen demand (SCOD) and ammonia release. International Biodeterioration & Biodegradation, 112, 42–50.

    Article  CAS  Google Scholar 

  • Madge, B. A., & Jensen, J. N. (2003). Disinfection of wastewater using a 20-kHz ultrasound unit. Water Environment Research, 74(2), 159–167.

    Article  Google Scholar 

  • Margulis, M. A. (1995). Sonochemistry and cavitation (p. 32). Luxemburg: CRC Press Publishers.

    Google Scholar 

  • Mason, T. J., & Pétrier, C. (2004). Ultrasound processes. In S. Parson (Ed.), Advanced oxidation processes for water and wastewater treatment (pp. 185–208). London: IWA Publishing.

    Google Scholar 

  • Neis, U., & Blume, T. (2003). Ultrasonic disinfection of wastewater effluents for high-quality reuse. Water Science and Technology: Water Supply, 3(4), 261–267.

    CAS  Google Scholar 

  • Oliver, B. G., & Cosgrove, E. G. (1975). The disinfection of sewage treatment plant effluents using ultraviolet light. Canadian Journal of Chemical Engineering, 53(2), 170–174.

    Article  Google Scholar 

  • Oolman, T. O., & Blanch, H. W. (1986). Bubble coalescence in stagnant liquids. Chemical Engineering Communications, 43(4–6), 237–261.

    Article  CAS  Google Scholar 

  • Pétrier, C., Jiang, Y., & Lamy, M.-F. (1998). Ultrasound and environment: sono-chemical destruction of chloroaromatic derivatives. Environmental Science & Technology, 32(9), 1316–1318.

    Article  Google Scholar 

  • Price, G. J., Ashokkumar, M., & Grieser, F. (2004). Sonoluminescence quenching of organic compounds in aqueous solution: frequency effects and implications for sonochemistry. Journal of the American Chemical Society, 126, 2755–2762.

    Article  CAS  Google Scholar 

  • Qualls, R., & Johnson, J. (1985). Modelling and efficiency of ultraviolet disinfection systems. Water Research, 19(8), 1039–1046.

    Article  CAS  Google Scholar 

  • Raman, V., & Abbas, A. (2008). Experimental investigations on ultrasound mediated particle breakage. Ultrasonics Sonochemistry, 15(1), 55–64.

    Article  CAS  Google Scholar 

  • Sunartio, D., Ashokkumar, M., & Grieser, F. (2005). The influence of acoustic power on multibubble sonoluminescence in aqueous solution containing organic solutes. Journal of Physical Chemistry B, 109(42), 20044–20050.

    Article  CAS  Google Scholar 

  • Toma, M., Fukutomi, S., Asakura, Y., & Koda, S. (2011). A calorimetric study of energy conversion efficiency of a sono-chemical reactor at 500 kHz for organic solvents. Ultrasonics Sonochemistry, 18(1), 197–208.

    Article  CAS  Google Scholar 

  • Torres, R. A., Pétrier, C., Combet, E., Moulet, F., & Pulgarin, C. (2007). Bisphenol A mineralization by integrated ultrasound-UV-ion (II) treatment. Environmental Science & Technology, 41(1), 297–302.

    Article  CAS  Google Scholar 

  • Torres, R. A., Sarantakos, G., Combet, E., Pétrier, C., & Pulgarin, C. (2008). Sequential helio-photo-Fenton and sonication processes for the treatment of bisphenol A. Journal of Photochemistry and Photobiology A: Chemistry, 199(2–3), 197–203.

    Article  CAS  Google Scholar 

  • Torres, R. A., Mosteo, R., Pétrier, C., & Pulgarin, C. (2009). Experimental design approach to the optimization of ultrasonic degradation of alachlor and enhancement of treated water biodegradability. Ultrasonics Sonochemistry, 16(3), 425–430.

    Article  CAS  Google Scholar 

  • van Haandel, A. C., & van der Lubbe, J. G. M. (2012). Handbook of biological wastewater treatment: design and optimisation of activated sludge systems (2nd ed.). London: IWA Publishing.

    Google Scholar 

  • Walton, A. J., & Reynolds, G. T. (1984). Sonoluminescence. Advances in Physics, 33(6), 595–660.

    Article  CAS  Google Scholar 

  • Yong, D., Cairns, W., Mao, T., & Farnood, R. (2008). Bench-scale evaluation of sonication as a pretreatment process for UV disinfection of wastewater. Water Quality Research Journal of Canada, 43(1), 37–45.

    CAS  Google Scholar 

  • Yong, H. N., Farnood, R., Cairns, W., & Mao, T. (2009). Effect of sonication on UV disinfectability of primary effluents. Water Environment Research, 81(7), 695–701.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to the Ontario Ministry of the Environment and Climate Change Best In Science Program for financial support. We also thank Mr. Bill Dai and Miss Lyra Elliot, student research assistants in Environment Canada, for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Farnood.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Torres-Palma, R.A., Gibson, J., Droppo, I.G. et al. Surfactant-Assisted Sono-breakage of Wastewater Particles for Improved UV Disinfection. Water Air Soil Pollut 228, 106 (2017). https://doi.org/10.1007/s11270-017-3283-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3283-y

Keywords

  • Wastewater treatment
  • Disinfection
  • Ultrasound
  • Ultraviolet light
  • Suspended particles
  • Surfactant