Skip to main content

Advertisement

Log in

Early Heat Shock Protein Response and Selection of Reference Genes in Arabidopsis thaliana Seedlings Subjected to Marine Fuel Contamination

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Strategies for management of damaged environments can benefit from understanding of how early petrochemical pollution affect living organisms. One of the general responses to environmental stress in plants is mediated by the regulatory network of heat shock proteins (HSP). Arabidopsis thaliana is a model plant for genetic studies, and laboratory experiments with this species might be informative for predicting analogous responses to toxicants in other species. Here, Arabidopsis seedlings were exposed to time-varying contamination (up to 24 h) with the water soluble fraction of MF380 marine fuel (WSF-MF380). An accurate estimation of expression differences in HSP genes was obtained by real-time quantitative polymerase chain reaction (qPCR). After a thorough selection and validation of reference genes, two gene pairs were found to be stably expressed across control and WSF-MF380-treated samples and were used as normalization factors. Next, we evaluated the normalized expression of five HSP genes in response to the time-varying WSF-MF380 contamination. Four HSPs presented a significant increase in gene expression, which suggests that they might be tested as biomarkers for early exposure to petrochemical compounds. While a nearly immediate response (3 h after contamination) was found for HSP90.1 and two small HSP genes localized in the mitochondria (sHSP23.5 and sHSP26.5), a slightly later response (20 h) was observed for a third small HSP with a cytoplasmic/nuclear localization (sHSP18.2). Overall, these expression changes suggest the existence of a genetic cross-talk between canonical regulatory networks of HSPs and the cellular response to non-heat stress factors, such as marine oil contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • An, L., Lei, K., & Zheng, B. (2014). Use of heat shock protein mRNA expressions as biomarkers in wild crucian carp for monitoring water quality. Environmental Toxicology and Pharmacology, 37(1), 248–255. doi:10.1016/j.etap.2013.11.019.

    Article  CAS  Google Scholar 

  • Andersen, C. L., Jensen, J. L., & Orntoft, T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64(15), 5245–5250. doi:10.1158/0008-5472.CAN-04-0496.

    Article  CAS  Google Scholar 

  • Anderson, J. W., Neff, J. M., Cox, B. A., Tatem, H. E., & Hightower, G. M. (1974). Characteristics of dispersions and water-soluble extracts of crude and refined oils and their toxicity to estuarine crustaceans and fish. Marine Biology, 27(1), 75–88. doi:10.1007/BF00394763.

    Article  CAS  Google Scholar 

  • Armstrong, A. F., Logan, D. C., Tobin, A. K., O’Toole, P., & Atkin, O. K. (2006). Heterogeneity of plant mitochondrial responses underpinning respiratory acclimation to the cold in Arabidopsis thaliana leaves. Plant, Cell and Environment, 29(5), 940–949. doi:10.1111/j.1365-3040.2005.01475.x.

    Article  Google Scholar 

  • Baden, S. P. (1982). Oxygen consumption rate of shrimp exposed to crude oil extract. Marine Pollution Bulletin, 13(7), 230–233. doi:10.1016/0025-326X(82)90344-7.

    Article  Google Scholar 

  • Beynon, E. R., Symons, Z. C., Jackson, R. G., Lorenz, A., Rylott, E. L., & Bruce, N. C. (2009). The role of oxophytodienoate reductases in the detoxification of the explosive 2,4,6-trinitrotoluene by Arabidopsis. Plant Physiology, 151(1), 253–261. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2735992&tool=pmcentrez&rendertype=abstract.

    Article  CAS  Google Scholar 

  • Cruz, F., Kalaoun, S., Nobile, P., Colombo, C., Almeida, J., Barros, L. M. G., et al. (2009). Evaluation of coffee reference genes for relative expression studies by quantitative real-time RT-PCR. Molecular Breeding, 23(4), 607–616. doi:10.1007/s11032-009-9259-x.

    Article  CAS  Google Scholar 

  • Czechowski, T., Stitt, M., Altmann, T., & Udvardi, M. K. (2005). Genome-wide identification and testing of superior reference genes for transcript normalization. Society, 139(September), 5–17. doi:10.1104/pp.105.063743.1.

    CAS  Google Scholar 

  • Dheda, K., Huggett, J. F., Chang, J. S., Kim, L. U., Bustin, S. A., Johnson, M. A., et al. (2005). The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Analytical Biochemistry, 344(1), 141–143. doi:10.1016/j.ab.2005.05.022.

    Article  CAS  Google Scholar 

  • Dolferus, R., Osterman, J. C., Peacock, W. J., & Dennis, E. S. (1997). Cloning of the Arabidopsis and rice formaldehyde dehydrogenase genes: implications for the origin of plant ADH enzymes. Genetics, 146(3), 1131–1141.

    CAS  Google Scholar 

  • Guenin, S., Mauriat, M., Pelloux, J., Van Wuytswinkel, O., Bellini, C., & Gutierrez, L. (2009). Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. Journal of Experimental Botany, 60(2), 487–493. doi:10.1093/jxb/ern305.

    Article  CAS  Google Scholar 

  • Gutierrez, L., Mauriat, M., Guénin, S., Pelloux, J., Lefebvre, J.-F., Louvet, R., et al. (2008a). The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnology Journal, 6(6), 609–18. doi:10.1111/j.1467-7652.2008.00346.x.

    Article  CAS  Google Scholar 

  • Gutierrez, L., Mauriat, M., Pelloux, J., Bellini, C., & Van Wuytswinkel, O. (2008b). Towards a systematic validation of references in real-time RT-PCR. The Plant Cell, 20(7), 1734–1735. doi:10.1105/tpc.108.059774.

    Article  CAS  Google Scholar 

  • Hershner, C., & Lake, J. (1980). Effects of chronic oil pollution on a salt-marsh grass community. Marine Biology, 56(2), 163–173. doi:10.1007/BF00397133.

    Article  CAS  Google Scholar 

  • Huggett, J., Dheda, K., Bustin, S., & Zumla, A. (2005). Real-time RT-PCR normalisation: strategies and considerations. Genes and Immunity, 6(4), 279–84. doi:10.1038/sj.gene.6364190.

    Article  CAS  Google Scholar 

  • ITOPF. (2015). Oil tanker spill statistics 2014. The International Tanker Owners Pollution Federation Limited, (January), 12p.

  • Karlen, Y., McNair, A., Perseguers, S., Mazza, C., & Mermod, N. (2007). Statistical significance of quantitative PCR. BMC Bioinformatics, 8, 131. doi:10.1186/1471-2105-8-131.

    Article  Google Scholar 

  • Kim, B.-M., Rhee, J.-S., Jeong, C.-B., Seo, J. S., Park, G. S., Lee, Y.-M., & Lee, J.-S. (2014). Heavy metals induce oxidative stress and trigger oxidative stress-mediated heat shock protein (HSP) modulation in the intertidal copepod Tigriopus japonicus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 166, 65–74. doi:10.1016/j.cbpc.2014.07.005.

    CAS  Google Scholar 

  • Kurimoto, K., Day, D. a., Lambers, H., & Noguchi, K. (2004). Effect of respiratory homeostasis on plant growth in cultivars of wheat and rice. Plant, Cell and Environment, 27(7), 853–862. doi:10.1111/j.1365-3040.2004.01191.x.

    Article  Google Scholar 

  • Lewis, S., Handy, R. D., Cordi, U. B., Billinghurst, Z., & Depledge, M. H. (1999). Stress proteins (HSP’s): methods of detection and their use as an environmental biomarker. Ecotoxicology, 8, 351–368.

    Article  CAS  Google Scholar 

  • Matta, B. P., Bitner-Mathé, B. C., & Alves-Ferreira, M. (2011). Getting real with real-time qPCR: a case study of reference gene selection for morphological variation in Drosophila melanogaster wings. Development Genes and Evolution, 221(1), 49–57. doi:10.1007/s00427-011-0356-6.

    Article  CAS  Google Scholar 

  • Meniconi, M. D. G., Gabardo, I. T., Carneiro, M. E. R., Barbanti, S. M., da Silva, G. C., & Massone, C. G. (2002). Brazilian oil spills chemical characterization—case studies. Environmental Forensics, 3(3–4), 303–321. doi:10.1006/enfo.2002.0101.

    Article  CAS  Google Scholar 

  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–497. doi:10.1111/j.1399-3054.1962.tb08052.x.

    Article  CAS  Google Scholar 

  • Muratova, A., Hūbner, T., Tischer, S., Turkovskaya, O., Möder, M., & Kuschk, P. (2003). Plant-rhizosphere-microflora association during phytoremediation of PAH-contaminated soil. International Journal of Phytoremediation, 5(2), 137–151.

    Article  CAS  Google Scholar 

  • Nardeli, S. M., Saad, C. F., de Rossetto, P. B., Caetano, V. S., Ribeiro-Alves, M., Paes, J. E. S., et al. (2016). Transcriptional responses of Arabidopsis thaliana to oil contamination. Environmental and Experimental Botany, 127, 63–72. doi:10.1016/j.envexpbot.2016.03.007.

    Article  CAS  Google Scholar 

  • Pezeshki, S. R., Hester, M. W., Lin, Q., & Nyman, J. A. (2000). The effects of oil spill and clean-up on dominant US Gulf coast marsh macrophytes: a review. Environmental Pollution, 108(2), 129–139.

    Article  CAS  Google Scholar 

  • Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30(9), e36. doi:10.1093/nar/30.9.e36.

    Article  Google Scholar 

  • Proffitt, C. E., Devlin, D. J., & Lindseyt, M. (1995). Effects of oil on mangrove seedlings grown under different environmental conditions. Marine Pollution Bulletin, 30(12), 788–793. doi:10.1016/0025-326X(95)00070-4.

    Article  CAS  Google Scholar 

  • Ralph, P. J., & Burchett, M. D. (1998). Impact of petrochemicals on the photosynthesis of Halophila ovalis using chlorophyll fluorescence. Marine Pollution Bulletin, 36(6), 429–436. doi:10.1016/S0025-326X(97)00207-5.

    Article  CAS  Google Scholar 

  • Regier, N., Baerlocher, L., Münsterkötter, M., Farinelli, L., & Cosio, C. (2013). Analysis of the Elodea nuttallii transcriptome in response to mercury and cadmium pollution: development of sensitive tools for rapid ecotoxicological testing. Environmental Science and Technology, 47(15), 8825–8834. doi:10.1021/es401082h.

    Article  CAS  Google Scholar 

  • Regier, N., Cosio, C., von Moos, N., & Slaveykova, V. I. (2015). Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii. Chemosphere, 128, 56–61. doi:10.1016/j.chemosphere.2014.12.078.

    Article  CAS  Google Scholar 

  • Remans, T., Smeets, K., Opdenakker, K., Mathijsen, D., Vangronsveld, J., & Cuypers, A. (2008). Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Environmental and Experimental Botany, 1343–1349. doi:10.1007/s00425-008-0706-4.

  • Roelofs, D., Aarts, M. G. M., Schat, H., & Straalen, N. M. Van. (2008). Functional ecological genomics to demonstrate general and specific responses to abiotic stress. Functional Ecology, (Figure 1), 8–18. doi:10.1111/j.1365-2435.2007.01312.x.

  • Safari, R., Shabani, A., Ramezanpour, S., Imanpour, M. R., & Rezvani, S. (2014). Alternations of heat shock proteins (hsp 70) gene expression in liver and gill of Persian sturgeon (Acipenser persicus Borodin, 1987) exposed to cadmium chloride, 13(4), 979–997.

  • Siddique, M., Gernhard, S., von Koskull-Döring, P., Vierling, E., & Scharf, K.-D. (2008). The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress and Chaperones, 13(2), 183–197. doi:10.1007/s12192-008-0032-6.

    Article  CAS  Google Scholar 

  • Snape, J. R., Maund, S. J., Pickford, D. B., & Hutchinson, T. H. (2004). Ecotoxicogenomics: the challenge of integrating genomics into aquatic and terrestrial ecotoxicology. Aquatic toxicology (Amsterdam, Netherlands), 67(2), 143–54. doi:10.1016/j.aquatox.2003.11.011.

    Article  CAS  Google Scholar 

  • Steffens, J., Landulfo, E., Courrol, L. C., & Guardani, R. (2011). Application of fluorescence to the study of crude petroleum. Journal of Fluorescence, 21(3), 859–864.

    Article  CAS  Google Scholar 

  • Swindell, W. R., Huebner, M., & Weber, A. P. (2007). Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics, 8(1), 125. doi:10.1186/1471-2164-8-125.

    Article  Google Scholar 

  • Tyedmers, J., Mogk, A., & Bukau, B. (2010). Cellular strategies for controlling protein aggregation. Nature Reviews Molecular Cell Biology, 11(11), 777–788. doi:10.1038/nrm2993.

    Article  CAS  Google Scholar 

  • Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., & Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3(7), RESEARCH0034. doi:10.1186/gb-2002-3-7-research0034.

  • Waters, E. R. (2013). The evolution, function, structure, and expression of the plant sHSPs. Journal of Experimental Botany, 64(2), 391–403. doi:10.1093/jxb/ers355.

    Article  CAS  Google Scholar 

  • Waters, E. R., Aevermann, B. D., & Sanders-Reed, Z. (2008). Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns. Cell Stress and Chaperones, 13(2), 127–142. doi:10.1007/s12192-008-0023-7.

    Article  CAS  Google Scholar 

  • Weisman, D., Alkio, M., & Colón-Carmona, A. (2010). Transcriptional responses to polycyclic aromatic hydrocarbon-induced stress in Arabidopsis thaliana reveal the involvement of hormone and defense signaling pathways. BMC Plant Biology, 10(1), 59. http://www.ncbi.nlm.nih.gov/pubmed/20377843.

    Article  Google Scholar 

  • Youssef, T. (2002). Physiological responses of Avicennia marina seedlings to the phytotoxic effects of the water-soluble fraction of light Arabian crude oil. Environmentalist, 22(2), 149–159. doi:10.1023/A:1015385700669.

    Article  Google Scholar 

  • Zhao, S., & Fernald, R. D. (2005). Comprehensive algorithm for quantitative real-time polymerase chain reaction. Journal of Computational Biology, 12(8), 1047–1064. doi:10.1089/cmb.2005.12.1047.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Msc. Jorge Eduardo Santos Paes for kindly providing the marine oil used in this work and Dr. Vanessa Santana for the help with growth conditions and marine fuel treatment. This work was supported by Petrobras, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcio Alves-Ferreira.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Sarah Muniz Nardeli and Bruna Palma Matta contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nardeli, S.M., Matta, B.P., Saad, C.F. et al. Early Heat Shock Protein Response and Selection of Reference Genes in Arabidopsis thaliana Seedlings Subjected to Marine Fuel Contamination. Water Air Soil Pollut 228, 101 (2017). https://doi.org/10.1007/s11270-017-3251-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3251-6

Keywords

Navigation