Advertisement

Water, Air, & Soil Pollution

, 228:68 | Cite as

Factors Affecting the Growth of Microalgae on Blackwater from Biosolid Dewatering

  • Francesca Marazzi
  • Elena Ficara
  • Riccardo Fornaroli
  • Valeria Mezzanotte
Article

Abstract

This paper discusses the possibility of including the culturing of microalgae within a conventional wastewater treatment sequence by growing them on the blackwater (BW) from biosolid dewatering to produce biomass to feed the anaerobic digester. Two photobioreactors were used: a 12 L plexiglas column for indoor, lab-scale tests and a 85 L plexiglas column for outdoor culturing. Microalgae (Chlorella sp. and Scenedesmus sp.) could easily grow on the tested blackwater. The average specific growth rate in indoor and outdoor batch tests was satisfactory, ranging between 0.14 and 0.16 day−1. During a continuous test performed under outdoor conditions from May to November, in which the off-gas from the combined heat and power unit was used as the CO2 source, an average biomass production of 50 mgTSS L−1 day−1 was obtained. However, statistical analyses confirmed that microalgal growth was affected by environmental conditions (temperature and season) and that it was negatively correlated with the occurrence of nitrification. Finally, the biochemical methane potential of the algal biomass was slightly higher than that from waste sludge (208 mLCH4 gVS−1 vs. 190 mLCH4 gVS−1).

Keywords

Microalgae Blackwater Outdoor cultivation Wastewater treatment plant 

Notes

Acknowledgements

We thank Bresso-Seveso Sud WWTP (Amiacque CAP holding) for hosting the experimentation and SEAM staff for helpful collaboration. We gratefully thank the reviewers for their time and efforts to improve this paper.

References

  1. Acién, F. G., Fernández, J. M., Magán, J. J., & Molina, E. (2012). Production cost of a real microalgae production plant and strategies to reduce it. Biotechnology Advances, 30(6), 1344–1353. doi: 10.1016/j.biotechadv.2012.02.005.CrossRefGoogle Scholar
  2. Anthonisen, A. C., Srinath, E. G., Loehr, R. C., & Prakasam, T. B. S. (1976). Inhibition of nitrification and nitrous acid compounds. Water Environment Federation, 48(5), 835–852. doi: 10.2307/25038971.Google Scholar
  3. APHA. (2005). Standard Methods for the Examination of Water and Wastewater (21st ed.). Washington DC: American Public Health Association.Google Scholar
  4. Arbib, Z., Ruiz, J., Álvarez-Díaz, P., Garrido-Pérez, C., Perales, J. A. (2014) Capability of different microalgae species for phytoremediation processes: wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production. Water Research, 49, 465–474.Google Scholar
  5. Arcila, J. S., & Buitrón, G. (2016). Microalgae-bacteria aggregates: effect of the hydraulic retention time on the municipal wastewater treatment, biomass settleability and methane potential. Journal of Chemical Technology and Biotechnology, 91, 2862–2870. doi: 10.1002/jctb.4901.CrossRefGoogle Scholar
  6. Bahr, M., Díaz, I., Dominguez, A., González Sánchez, A., & Muñoz, R. (2014). Microalgal-biotechnology as a platform for an integral biogas upgrading and nutrient removal from anaerobic effluents. Environmental Science and Technology, 48(1), 573–581. doi: 10.1021/es403596m.CrossRefGoogle Scholar
  7. Bchir, F. S., Gannoun, H., Herry, S. E., & Hamdi, M. (2011). Optimization of Spongiochloris sp. biomass production in the abattoir digestate. Bioresource Technology, 102(4), 3869–3876. doi: 10.1016/j.biortech.2010.11.036.CrossRefGoogle Scholar
  8. Bizzotto, E. C., Villa, S., & Vighi, M. (2009). POP bioaccumulation in macroinvertebrates of alpine freshwater systems. Environmental Pollution, 157(12), 3192–3198. doi: 10.1016/j.envpol.2009.06.001.CrossRefGoogle Scholar
  9. Blier, R., Lalibert, G., & De Notie, J. (1995). Tertiary treatment of cheese factory anaerobic effluent with Phormidium bohneri and Micractinum pusillum. Bioresource Technology, 52, 151–155.CrossRefGoogle Scholar
  10. Borowitzka, M. A., & Moheimani, N. R. (2013). In M. A. Borowitzka & N. R. Moheimani (Eds.), Algae for Biofuels and Energy. Dordrecht: Springer Netherlands. doi: 10.1007/978-94-007-5479-9.CrossRefGoogle Scholar
  11. Chen, R., Li, R., Deitz, L., Liu, Y., Stevenson, R. J., & Liao, W. (2012). Freshwater algal cultivation with animal waste for nutrient removal and biomass production. Biomass and Bioenergy, 39, 128–138. doi: 10.1016/j.biombioe.2011.12.045.CrossRefGoogle Scholar
  12. Chinnasamy, S., Bhatnagar, A., Hunt, R. W., & Das, K. C. (2010). Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology, 101(9), 3097–3105. doi: 10.1016/j.biortech.2009.12.026.CrossRefGoogle Scholar
  13. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306. doi: 10.1016/j.biotechadv.2007.02.001.CrossRefGoogle Scholar
  14. Cho, S., Lee, N., Park, S., Yu, J., Luong, T. T., Oh, Y.-K., & Lee, T. (2013). Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources. Bioresource Technology, 131, 515–520. doi: 10.1016/j.biortech.2012.12.176.CrossRefGoogle Scholar
  15. Craggs, R., Sutherland, D., & Campbell, H. (2012). Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. Journal of Applied Phycology, 24(3), 329–337. doi: 10.1007/s10811-012-9810-8.CrossRefGoogle Scholar
  16. De-Bashan, L. E., & Bashan, Y. (2010). Immobilized microalgae for removing pollutants: review of practical aspects. Bioresource Technology, 101(6), 1611–1627. doi: 10.1016/j.biortech.2009.09.043.CrossRefGoogle Scholar
  17. El Hamouri, B. (2012) Rethinking natural, extensive systems for tertiary treatment purposes: The high-rate algae pond as an example. Desalination and Water Treatment, 4(1–3), 128–134.Google Scholar
  18. Fernández, I., Acién, F. G., Berenguel, M., & Guzmán, J. L. (2014). First principles model of a tubular photobioreactor for microalgal production. Industrial and Engineering Chemistry Research, 53, 11121–11136. doi: 10.1021/ie501438r.CrossRefGoogle Scholar
  19. Ficara, E., Uslenghi, A., Basilico, D., & Mezzanotte, V. (2014). Growth of microalgal biomass on supernatant from biosolid dewatering. Water Science and Technology, 69, 896–902. doi: 10.2166/wst.2013.805.CrossRefGoogle Scholar
  20. Fouilland, E., Vasseur, C., Leboulanger, C., Le Floc’h, E., Carré, C., Marty, B., et al. (2014). Coupling algal biomass production and anaerobic digestion: production assessment of some native temperate and tropical microalgae. Biomass and Bioenergy, 70, 564–569. doi: 10.1016/j.biombioe.2014.08.027.CrossRefGoogle Scholar
  21. Franchino, M., Comino, E., Bona, F., & Riggio, V. a. (2013). Growth of three microalgae strains and nutrient removal from an agro-zootechnical digestate. Chemosphere, 92(6), 738–744. doi: 10.1016/j.chemosphere.2013.04.023.CrossRefGoogle Scholar
  22. Ge, S., & Champagne, P. (2016). Nutrient removal, microalgal biomass growth, harvesting and lipid yield in response to centrate wastewater loadings. Water Research, 88, 604–612. doi: 10.1016/j.watres.2015.10.054.CrossRefGoogle Scholar
  23. Ge, S., Champagne, P., Plaxton, W. C., Leite, G. B., & Marazzi, F. (2016). Microalgal cultivation with waste streams and metabolic constraints to triacylglycerides accumulation for biofuel production. Biofuels, Bioproducts and Biorefining. doi: 10.1002/bbb.Google Scholar
  24. Gonzales, L. E. , Canizares  R. O. , Baena S. (1997). Efficiency of ammonia and phosphprus removal from a colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphusBioresource technology, 60, 259–262.Google Scholar
  25. González, C., Marciniak, J., Villaverde, S., García-Encina, P. A., & Muñoz, R. (2008). Microalgae-based processes for the biodegradation of pretreated piggery wastewaters. Applied Microbiology and Biotechnology, 80(5), 891–898. doi: 10.1007/s00253-008-1571-6.CrossRefGoogle Scholar
  26. González-Fernández, C., Molinuevo-Salces, B., & García-González, M. C. (2011). Nitrogen transformations under different conditions in open ponds by means of microalgae-bacteria consortium treating pig slurry. Bioresource Technology, 102(2), 960–966. doi: 10.1016/j.biortech.2010.09.052.CrossRefGoogle Scholar
  27. Green, F. B., Lundquist, J. T., & Oswald, W. J. (1995). Energetics of advanced integrated wastewater pond systems. Water Science and Technology, 31(12), 9–20.CrossRefGoogle Scholar
  28. Harrel, F., & Dupont, C. (2015). Hmisc: Harrell Miscellaneous. R package version 3.17-1. http://CRAN.R-project.org/package=Hmisc
  29. Li, Y., Horsman, M., Wang, B., Wu, N., & Lan, C. Q. (2008). Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied Microbiology and Biotechnology, 81(4), 629–936. doi: 10.1007/s00253-008-1681-1.CrossRefGoogle Scholar
  30. Lourie, E., Patil, V., & Gjengedal, E. (2010). Efficient purification of heavy-metal-contaminated water by microalgae-activated pine bark. Water, Air, and Soil Pollution, 210(1–4), 493–500. doi: 10.1007/s11270-009-0275-6.CrossRefGoogle Scholar
  31. Makulla, A. (2000). Fatty acid composition of Scenedesmus obliquus: correlation to dilution rates. Limnologica - Ecology and Management of Inland Waters, 30, 162–168. doi: 10.1016/S0075-9511(00)80011-0.CrossRefGoogle Scholar
  32. Marcilhac, C., Sialve, B., Pourcher, A. M., Ziebal, C., Bernet, N., & Béline, F. (2014). Digestate color and light intensity affect nutrient removal and competition phenomena in a microalgal-bacterial ecosystem. Water Research, 64, 278–287. doi: 10.1016/j.watres.2014.07.012.CrossRefGoogle Scholar
  33. Marcilhac, C., Sialve, B., Pourcher, A.-M., Ziebal, C., Bernet, N., & Béline, F. (2015). Control of nitrogen behaviour by phosphate concentration during microalgal-bacterial cultivation using digestate. Bioresource Technology, 175, 224–230. doi: 10.1016/j.biortech.2014.10.022.CrossRefGoogle Scholar
  34. Monlau, F., Sambusiti, C., Ficara, E., Aboulkas, A., Barakat, A., & Carrère, H. (2015). New opportunities for agricultural digestate valorization: current situation and perspectives. Energy & Environmental Science, 2600–2621. doi: 10.1039/C5EE01633A.
  35. Mooij, P. R., Stouten, G. R., Tamis, J., van Loosdrecht, M. C. M., & Kleerebezem, R. (2013). Survival of the fattest. Energy & Environmental Science, 6(12), 3404. doi: 10.1039/c3ee42912a.CrossRefGoogle Scholar
  36. Muñoz, R., & Guieysse, B. (2006). Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Research, 40(15), 2799–2815. doi: 10.1016/j.watres.2006.06.011.CrossRefGoogle Scholar
  37. Mussgnug, J. H., Klassen, V., Schlüter, A., & Kruse, O. (2010). Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology, 150(1), 51–56. doi: 10.1016/j.jbiotec.2010.07.030.CrossRefGoogle Scholar
  38. Nielsen, S. L., Enríquez, S., Duarte, C. M., & Sand–Jensen, K. (1996). Scaling maximum growth rates across photosynthetic organisms. Functional Ecology, 10, 167–175.CrossRefGoogle Scholar
  39. OECD (2006) Test n 311. Anaerobic biodegradability of organic compounds in digested sludge by measurement of gas productionGoogle Scholar
  40. Olguín, E. J., Hernández, B., Araus, A., Camacho, R., González, R., Ramírez, M. E., et al. (1994). Simultaneous high-biomass protein production and nutrient removal using Spirulina maxima in sea water supplemented with anaerobic effluents. World Journal of Microbiology & Biotechnology, 10(5), 576–578. doi: 10.1007/BF00367671.CrossRefGoogle Scholar
  41. Osundeko, O., & Pittman, J. K. (2014). Implications of sludge liquor addition for wastewater-based open pond cultivation of microalgae for biofuel generation and pollutant remediation. Bioresource Technology, 152, 355–363. doi: 10.1016/j.biortech.2013.11.035.CrossRefGoogle Scholar
  42. Park, J. B. K., & Craggs, R. J. (2011). Nutrient removal in wastewater treatment high rate algal ponds with carbon dioxide addition. Water Science & Technology, 63(8), 1758. doi: 10.2166/wst.2011.114.CrossRefGoogle Scholar
  43. Pittman, J. K., Dean, A. P., & Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 102(1), 17–25. doi: 10.1016/j.biortech.2010.06.035.CrossRefGoogle Scholar
  44. Posadas, E., Bochon, S., Coca, M., García-González, M. C., García-Encina, P. a., & Muñoz, R. (2014). Microalgae-based agro-industrial wastewater treatment: a preliminary screening of biodegradability. Journal of Applied Phycology. doi: 10.1007/s10811-014-0263-0.Google Scholar
  45. Prandini, J. M., da Silva, M. L. B., Mezzari, M. P., Pirolli, M., Michelon, W., & Soares, H. M. (2016). Enhancement of nutrient removal from swine wastewater digestate coupled to biogas purification by microalgae Scenedesmus spp. Bioresource Technology, 202, 67–75. doi: 10.1016/j.biortech.2015.11.082.CrossRefGoogle Scholar
  46. Prommuak, C., Pavasan, S., Quitain, A. T., Goto, M., & Shotipruk, A. (2013). Simultaneous production of biodiesel and free lutein from Chlorella vulgaris. Chemical Engineering & Tecnology, 36(5), 733–739.CrossRefGoogle Scholar
  47. Quiroz, C. E., Peebles, C., & Bradley, T. H. (2015). Scalability of combining microalgae-based biofuels with wastewater facilities: a review. Algal, 9, 160–169. doi: 10.1016/j.algal.2015.03.001.CrossRefGoogle Scholar
  48. R core Team. (2015). R: A language and environment for statistical computing, Vienna, Austria. URL http://www.R-project.org
  49. Roberts, K. P., Heaven, S., & Banks, C. J. (2016). Comparative testing of energy yields from micro-algal biomass cultures processed via anaerobic digestion. Renewable Energy, 87, 744–753. doi: 10.1016/j.renene.2015.11.009.CrossRefGoogle Scholar
  50. Sambusiti, C., Rollini, M., Ficara, E., Musatti, A., Manzoni, M., & Malpei, F. (2014). Enzymatic and metabolic activities of four anaerobic sludges and their impact on methane production from ensiled sorghum forage. Bioresource Technology, 155, 122–128. doi: 10.1016/j.biortech.2013.12.055.CrossRefGoogle Scholar
  51. Shrestha, R. P., Haerizadeh, F., & Hildebrand, M. (2013). Handbook of microalgal culture. Handbook of Microalgal Culture: Applied Phycology and Biotechnology. doi: 10.1002/9781118567166.Google Scholar
  52. Sialve, B., Bernet, N., & Bernard, O. (2009). Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnology Advances, 27(4), 409–416. doi: 10.1016/j.biotechadv.2009.03.001.CrossRefGoogle Scholar
  53. Skorupskaite, V., Makareviciene, V., & Levisauskas, D. (2015). Optimization of mixotrophic cultivation of microalgae Chlorella sp. for biofuel production using response surface methodology. Algal Research, 7, 45–50. doi: 10.1016/j.algal.2014.12.001.CrossRefGoogle Scholar
  54. Slegers, P. M., Lösing, M. B., Wijffels, R. H., van Straten, G., & van Boxtel, A. J. B. (2013). Scenario evaluation of open pond microalgae production. Algal Research, 2(4), 358–368. doi: 10.1016/j.algal.2013.05.001.CrossRefGoogle Scholar
  55. Uggetti, E., Sialve, B., Latrille, E., & Steyer, J. P. (2014). Anaerobic digestate as substrate for microalgae culture: the role of ammonium concentration on the microalgae productivity. Bioresource Technology, 152, 437–443. doi: 10.1016/j.biortech.2013.11.036.CrossRefGoogle Scholar
  56. Vasseur, C., Bougaran, G., Garnier, M., Hamelin, J., Leboulanger, C., Le Chevanton, M., et al. (2012). Carbon conversion efficiency and population dynamics of a marine algae-bacteria consortium growing on simplified synthetic digestate: first step in a bioprocess coupling algal production and anaerobic digestion. Bioresource Technology, 119, 79–87. doi: 10.1016/j.biortech.2012.05.128.CrossRefGoogle Scholar
  57. Wang, M., & Park, C. (2015). Investigation of anaerobic digestion of Chlorella sp. and Micractinium sp. grown in high-nitrogen wastewater and their co-digestion with waste activated sludge. Biomass and Bioenergy, 80(813), 30–37. doi: 10.1016/j.biombioe.2015.04.028.CrossRefGoogle Scholar
  58. Wang, B., Li, Y., Wu, N., & Lan, C. Q. (2008). CO2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology, 79(5), 707–718. doi: 10.1007/s00253-008-1518-y.CrossRefGoogle Scholar
  59. Ward, A. J., Lewis, D. M., & Green, F. B. (2014). Anaerobic digestion of algae biomass: a review. Algal Research, 5, 204–214. doi: 10.1016/j.algal.2014.02.001.CrossRefGoogle Scholar
  60. Weiland, R., & Hatcher, N. (2012). Stripping sour water: the effect of heat stable salts. Petroleum Technology Quarterly, 17, 105–109.Google Scholar
  61. Xin, L., Hu, H., Ke, G., & Sun, Y. (2010). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology, 101(14), 5494–5500. doi: 10.1016/j.biortech.2010.02.016.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Francesca Marazzi
    • 1
    • 2
  • Elena Ficara
    • 2
  • Riccardo Fornaroli
    • 1
  • Valeria Mezzanotte
    • 1
  1. 1.DISATUniversità degli Studi di Milano-BicoccaMilanItaly
  2. 2.DICA Politecnico di MilanoMilanItaly

Personalised recommendations