Skip to main content
Log in

Remediation of Diquat-Contaminated Water by Electrochemical Advanced Oxidation Processes Using Boron-Doped Diamond (BDD) Anodes

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The electrochemical elimination of the herbicide diquat dibromide (DQ) in an undivided electrochemical cell (Condiacell®-type cell) and an H-type cell (a divided electrochemical cell) using boron-doped diamond (BDD) electrodes is reported for the first time. The degradation of essentially 100% of the DQ present was achieved in the undivided electrochemical cell and ca. 92% in the H-type cell. Nearly 80% of the total organic carbon (TOC) and of the chemical oxygen demand (COD) were removed after 5 h of treatment at different current densities (i.e., 0.5, 1.0, and 1.5 mA/cm2 for the undivided cell, and 2.5, 5.0, and 7.5 mA/cm2 for the H-type cell) with a maximum specific energy consumption of approximately 150 kWh kg−1 of COD degraded in the undivided cell, and 300 kWh kg−1 of COD in the H-type cell. Energy consumption of about 0.30 kWh g−1 of TOC occurred in the undivided electrochemical cell and 2.0 in the H-type cell. In spite of obtaining similar percentages of DQ degradation and of COD and TOC removal, a smaller energy usage was required in the undivided cell since smaller current densities were employed. Best results were obtained with the undivided cell, since it required a smaller current density to obtain virtually the same percentage of DQ degradation and removal of COD and TOC. The results obtained herein show that the use of electrochemical advanced oxidation processes may be a good alternative for DQ degradation in polluted water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abu-Ghalwa, N., Abu-Shawish, H. M., Hamada, M., Hartani, K., & Hakem-Basheer, A. A. (2012). Studies on degradation of diquat pesticide in aqueous solutions using electrochemical method. American Journal of Analytical Chemistry, 3, 99–105.

    Article  CAS  Google Scholar 

  • APHA, AWWA, WPCF, in: A.D. Eaton, A.E. Clesceri, E.W. Rice, A.E. Greenberg (Eds.) (1999) Standard methods for the examination of water and wastewater, 20st ed., American Public Health Association, American Water Works Association and Water Environment Federation, Washington, D.C.

  • Bard, A. J., & Faulkner, L. R. (2001). Electrochemical methods fundamentals and applications (Second editionth ed., p. 339). New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Blanco, J., & Malato, S. S. (2003). Solar detoxification. France: UNESCO Publishing.

    Google Scholar 

  • Bouétard, A., Besnard, A. L., Vassaux, D., Lagadic, L., & Coutellec, M. A. (2013). Impact of the redox-cycling herbicide diquat on transcript expression and antioxidant enzymatic activities of the freshwater snail Lymnaea stagnalis. Aquatic Toxicology, 126, 256–265.

    Article  Google Scholar 

  • Brillas, E. (2014). Electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton treatments of organics in waters using a boron-doped diamond anode: a review. Journal of the Mexican Chemical Society, 58, 239–255.

    CAS  Google Scholar 

  • Brillas, E., & Martínez-Huitle, C. A. (2014). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review, Applied Catalysis B, 166–167, 603–643.

    Google Scholar 

  • Brillas, E., Sirés, I., & Oturan, M. A. (2009). Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chemical Reviews, 109, 6570–6631.

    Article  CAS  Google Scholar 

  • Campos-Gonzalez, E., Frontana-Uribe, B. A., Vasquez-Medrano, R., Macias-Bravo, S., & Ibanez, J. G. (2014). Advanced electrochemical oxidation of methyl parathion at boron doped diamond electrodes. Journal of the Mexican Chemical Society, 58, 315–321.

    CAS  Google Scholar 

  • Carbajal-Palacios, P., Balderas-Hernández, P., Ibanez, J. G., & Roa-Morales, G. (2012). Replacing dichromate with hydrogen peroxide in the chemical oxygen demand (COD) test. Water Science & Technology, 66, 1069–1073.

    Article  CAS  Google Scholar 

  • Cartaxo, M. A. M., Borges, C. M., Pereira, M. I. S., & Mendonca, M. H. (2015). Electrochemical oxidation of paraquat in neutral medium. Electrochimica Acta, 176, 1010–1018.

    Article  CAS  Google Scholar 

  • Cocenza, D. S., de Moraes, M. A., Beppu, M. M., & Fraceto, L. F. (2012). Use of biopolymeric membranes for adsorption of paraquat herbicide from water. Water Air Soil Pollution, 223, 3093–3104.

    Article  CAS  Google Scholar 

  • Compton, R. G., Laborda, E., & Ward, K. R. (2014). Understanding voltammetry: simulation of electrode processes (p. 30). London: Imperial College Press.

    Book  Google Scholar 

  • Cork, D. J., & Krueger, J. P. (1991). Microbial transformations of herbicides and pesticides. Advances in Applied Microbiology, 36, 1–66.

    Article  CAS  Google Scholar 

  • Cussler, E. L. (2007). Diffusion mass transfer in fluid systems (3rd ed., pp. 284–297). Cambridge: Cambridge University Press.

    Google Scholar 

  • Davis, J., Baygents, C., & Farrell, J. (2014). Understanding persulfate production at boron doped diamond film anodes. Electrochimica Acta, 150, 68–74.

    Article  CAS  Google Scholar 

  • de Moraes, A. M., Sgarbi-Cocenza, D., Vasconcellos, F., Fernandes-Fraceto, L., & Masumi-Beppu, M. (2013). Chitosan and alginate biopolymer membranes for remediation of contaminated water with herbicides. Journal of Environmental Management, 131, 222–227.

    Article  Google Scholar 

  • Delgado, J. (2007). Molecular diffusion coefficients of organic compounds in water at different temperatures. Journal of Phase Equilibria and Diffusion, 28, 427–432.

    Article  CAS  Google Scholar 

  • Devipriya, S., & Yesodharan, S. (2005). Photocatalytic degradation of pesticide contaminants in water. Solar Energy Materials and Solar Cells, 86, 309–348.

    Article  CAS  Google Scholar 

  • EFEDO, Risks of diquat dibromide use to the federally threatened delta smelt (Hypomesus transpacificus), Environmental Fate and Effects Division Officer of Pesticide Programs. http://citeseerx.ist.psu.edu/viewdoc/download?doi = 10.1.1.185.1235&rep = rep1&type = pdf, 2010 (accessed Jul. 4, 2016).

  • El-Ghenymy, A., Garrido, J. A., Rodríguez, R. M., Cabotm, P. L., Centellas, F., Arias, C., & Brillas, E. (2013). Degradation of sulfanilamide in acidic medium by anodic oxidation with a boron-doped diamond anode. Journal of Electroanalytical Chemistry, 689, 149–157.

    Article  CAS  Google Scholar 

  • El-Ghenymy, A., Centellas, F., Garrido, J. A., Rodríguez, R. M., Sirés, I., Cabot, P. L., & Brillas, E. (2014). Decolorization and mineralization of Orange G azo dye solutions by anodic oxidation with a boron-doped diamond anode in divided and undivided tank reactors. Electrochimica Acta, 130, 568–576.

    Article  CAS  Google Scholar 

  • Espinoza-Montero, P. J., Vasquez-Medrano, R., Ibanez, J. G., & Frontana-Uribe, B. A. (2013). Efficient anodic degradation of phenol paired to improve cathodic production of H2O2 at BDD electrodes. Journal of Electrochemical Society, 160, G3171–G3177.

    Article  CAS  Google Scholar 

  • Florencio, M. H., Pires, E., Castro, A. L., Nunes, M. R., Borges, C., & Costa, F. M. (2004). Photodegradation of diquat and paraquat in aqueous solutions by titanium dioxide: evolution of degradation reactions and characterisation of intermediates. Chemosphere, 55, 345–355.

    Article  CAS  Google Scholar 

  • Fortenberry, G. Z., Beckman, J., Schwartz, A., Prado, J. B., Graham, L. S., Higgins, S., Lackovic, M., Mulay, P., Bojes, H., Waltz, J., Mitchell, Y., Leinenkugel, K., Oriel, M. S., Evans, E., & Calvert, G. M. (2016). Magnitude and characteristics of acute paraquat- and diquat-related illnesses in the US: 1998–2013. Environmental Research, 146, 191–199.

    Article  CAS  Google Scholar 

  • Friedman, C. L., Templey, A. T., & Hay, A. (2006). Degradation of chloroacetanilide herbicides by anodic Fenton treatment. Journal of Agricultural and Food Chemistry, 54, 2640–2651.

    Article  CAS  Google Scholar 

  • Gao, L., Liu, G., Zhu, J., Wang, C., & Liu, J. (2015). Solid phase microextraction combined with gas chromatography–mass spectrometry for the determination of diquat residues in water. Journal of Analytical Chemistry, 70, 552–557.

    Article  CAS  Google Scholar 

  • Garcia Bessegato, G., Tasso-Guaraldo, T., Ferreira de Brito, J., Brugnera, M. F., & Boldrin-Zanoni, M. V. (2015). Achievements and trends in photoelectrocatalysis: from environmental to energy applications. Electrocatalysis, 6, 415–441.

    Article  Google Scholar 

  • García, O., Isarain, E., El-Ghenymy, A., Brillas, E., & Peralta, J. M. (2014). Degradation of 2,4-D herbicide in a recirculation flow plant with a Pt/air-diffusion and a BDD/BDD cell by electrochemical oxidation and electro-Fenton process. Journal of Electroanalytical Chemistry, 728, 1–9.

    Article  Google Scholar 

  • Guo, X., Li, D., Wan, J., & Yu, X. (2015). Preparation and electrochemical property of TiO2/nano-graphite composite anode for electro-catalytic degradation of ceftriaxone sodium. Electrochimica Acta, 180, 957–964.

    Article  CAS  Google Scholar 

  • Gupta, P.K. Herbicides and fungicides, in P.K. Gupta (Ed.) (2014). Biomarkers in toxicology, (pp. 409–431). Academic Press.

  • Ikehata, K., & El-Din, G. M. (2006). Aqueous pesticide degradation by hydrogen peroxide/ultraviolet irradiation and Fenton-type advanced oxidation processes: a review. Journal of Environmental Engineering and Science, 5, 81–135.

    Article  CAS  Google Scholar 

  • Kapalka, A., Fóti, G., & Comninellis, C. (2010). Basic principles of the electrochemical mineralization of organic pollutants for wastewater treatment. In C. Comninellis & G. Chen (Eds.), Electrochemistry for the environment (pp. 1–23). New York: Springer.

    Chapter  Google Scholar 

  • Karuppagounder, S. S., Ahuja, M., Buabeid, M., Parameshwaran, K., Abdel-Rehman, E., Suppiramaniam, V., & Dhanasekaran, M. (2012). Investigate the chronic neurotoxic effects of diquat. Neurochemical Research, 37, 1102–1111.

    Article  CAS  Google Scholar 

  • Khorram, M. S., Zhang, Q., Lin, D., Zheng, Y., Fang, H., & Yu, Y. (2016). Biochar: a review of its impact on pesticide behavior in soil 3 environments and its potential applications. Journal of Environmental Sciences, 44, 269–279.

    Article  Google Scholar 

  • Maharana, D., Xu, D., Niu, J., & Rao, N. N. (2015). Electrochemical oxidation of 2,4,5-trichlorophenoxyacetic acid by metal-oxide-coated Ti electrodes. Chemosphere, 136, 145–152.

    Article  CAS  Google Scholar 

  • Martínez-Huitle, C. A., & Ferro, S. (2006). Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chemical Society Reviews, 35, 1324–1340.

    Article  Google Scholar 

  • Martínez-Huitle, C. A., Rodrigo, M. A., Sirés, I., & Scialdone, O. (2015). Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chemical Reviews, 115, 13362–13407.

    Article  Google Scholar 

  • Michaud, P. A., Mahé, E., Haenni, W., Perret, A., & Comninellis, C. (2000). Preparation of peroxodisulfuric acid using boron-doped diamond thin film electrode. Electrochemical and Solid-State Letters, 3(2), 77–79.

    Article  CAS  Google Scholar 

  • Montes, I. J. S., Silva, B. F., & Aquino, J. M. (2017). On the performance of a hybrid process to mineralize the herbicide tebuthiuron using a DSA® anode and UVC light: a mechanistic study. Applied Catalysis B: Environmental, 200, 237–245.

    Article  CAS  Google Scholar 

  • Moreira, F. C., Boaventura, R. A. R., Brillas, E., & Vilar, V. J. P. (2017). Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Applied Catalysis B: Environmental, 202, 217–261.

    Article  CAS  Google Scholar 

  • NCFAP, Pesticide use in U.S. crop production: 1997, National Center for Food and Agricultural Policy. http://www.ncfap.org/documents/nationalsummary1997.pdf, 2000 (accessed Jul. 4, 2016).

  • Núñez, O., Kima, J. B., Moyano, E., Galceran, M. T., & Terabe, S. (2002). Analysis of the herbicides paraquat, diquat and difenzoquat in drinking water by micellar electrokinetic chromatography using sweeping and cation selective exhaustive injection. Journal of Chromatography A, 961, 65–75.

    Article  Google Scholar 

  • Panizza, M., & Cerisola, G. (2009). Direct and mediated anodic oxidation of organic pollutants. Chemical Reviews, 109, 6541–6569.

    Article  CAS  Google Scholar 

  • Panizza, M., Michaud, P. A., Cerisola, G., & Comninellis, C. (2001). Electrochemical treatment of wastewaters containing organic pollutants on boron-doped diamond electrodes: prediction of specific energy consumption and required electrode area. Electrochemistry Communications, 3, 336–339.

    Article  CAS  Google Scholar 

  • Pateiro-Moure, M., Martínez-Carballo, E., Arias-Estévez, M., & Simal-Gándara, J. (2008). Determination of quaternary ammonium herbicides in soils: comparison of digestion, shaking and microwave-assisted extractions. Journal of Chromatography A, 1196–1197, 110–116.

    Article  Google Scholar 

  • Pateiro-Moure, M., Arias-Estévez, M., & Simal-Gándara, J. (2013). Critical review on the environmental fate of quaternary ammonium herbicides in soils devoted to vineyards. Environmental Science & Technology, 47, 4984–4998.

    Article  CAS  Google Scholar 

  • Pereira, G. F., Rocha, R. C., Bocchi, N., & Biaggio, S. R. (2015). Electrochemical degradation of the herbicide picloram using a filter-press flow reactor with a boron-doped diamond or β-PbO2 anode. Electrochimica Acta, 179, 588–598.

    Article  CAS  Google Scholar 

  • Pipi, A. R. F., de Andrade, A. R., Brillas, E., & Sirés, I. (2014). Total removal of alachlor from water by electrochemical processes. Separation and Purification Technology, 132, 674–683.

    Article  CAS  Google Scholar 

  • Prosser, R. S., Anderson, J. C., Hanson, M. L., Solomon, K. R., & Sibley, P. K. (2016). Indirect effects of herbicides on biota in terrestrial edge-of-field habitats: a critical review of the literature. Agriculture, Ecosystems and Environment, 232, 59–72.

    Article  CAS  Google Scholar 

  • Rajeshwar, K., & Ibanez, J. G. (1997). Environmental electrochemistry: fundamentals and applications in pollution abatement (p. 364). New York: Academic.

    Google Scholar 

  • Ribeiro, A. R., Nunes, O. C., Pereira, M. F. R., & Silva, A. M. T. (2015). An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environment International, 75, 33–51.

    Article  CAS  Google Scholar 

  • Saidi, I., Soutrel, I., Fourcade, F., Amrane, A., Bellakhal, N., & Geneste, F. (2016). Electrocatalytic reduction of metronidazole using titanocene/Nafion 1-modified graphite felt electrode. Electrochimica Acta, 191, 821–831.

    Article  CAS  Google Scholar 

  • Santos, T. E. S., Solva, R. S., Eguiluz, K. I. B., & Salazar, G. R. (2015). Development of Ti/(RuO2)0.8(MO2)0.2(M = Ce, Sn or Ir) anodes for atrazine electro-oxidation. Influence of the synthesis method. Materials Letters, 146, 4–8.

    Article  CAS  Google Scholar 

  • Särkkä, H., Bhatnagar, A., & Sillanpää, M. (2015). Recent developments of electro-oxidation in water treatment—a review. Journal of Electroanalytical Chemistry, 754, 46–56.

    Article  Google Scholar 

  • Serrano, K., Michaud, P. A., Comninellis, C., & Savall, A. (2002). Electrochemical preparation of peroxodisulfuric acid using boron doped diamond thin film electrodes. Electrochimica Acta, 48, 431–436.

    Article  CAS  Google Scholar 

  • Shibin, O. M., Yesodharan, S., & Yesodharan, E. P. (2015). Sunlight induced photocatalytic degradation of herbicide diquat in water in presence of ZnO. Journal of Environmental Chemical Engineering, 3, 1107–1116.

    Article  CAS  Google Scholar 

  • Souza, F., Quijorna, S., Lanza, M. R. V., Saez, C., Cañizares, P., & Rodrigo, M. A. (2017). Applicability of electrochemical oxidation using diamond anodes to the treatment of a sulfonylurea herbicide. Catalysis Today, 280, 192–198.

    Article  CAS  Google Scholar 

  • Subba-Rao, A. N., & Venkatarangaiah, V. T. (2014). Metal oxide-coated anodes in wastewater treatment. Environmental Science and Pollution Research, 21, 3197–3217.

    Article  CAS  Google Scholar 

  • Tröster, I., Fryda, M., Herrmann, D., Schäfer, L., Hänni, W., Perret, A., Blaschke, M., Kraft, A., & Stadelmann, M. (2002). Electrochemical advanced oxidation process for water treatment using DiaChem® electrodes. Diamond and Related Materials, 11, 640–645.

    Article  Google Scholar 

  • Vymazal, J., & Brezinova, T. (2015). The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: a review. Environment International, 75, 11–20.

    Article  CAS  Google Scholar 

  • Weber, J. B., & Coble, H. D. (1968). Microbial decomposition of diquat adsorbed on montmorillonite and kaolinite clays. Journal of Agricultural and Food Chemistry, 16, 475–478.

    Article  CAS  Google Scholar 

  • Wu, W., Huang, Z. H., & Lim, T. T. (2014). Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water. Applied Catalysis A: General, 480, 58–78.

    Article  CAS  Google Scholar 

  • Yu, Y., Zhou, S., Bu, L., Shi, Z., Zhu, S. (2016). Degradation of diuron by electrochemically activated persulfate. Water Air Soil Pollution, 227–279.

Download references

Acknowledgements

We acknowledge the financial support from the research office of the Universidad Iberoamericana Project No. 54. “Electrochemical and photochemical reactions for more efficient energy use, 2nd. Phase,” and the experimental assistance by Samuel Macias-Bravo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Vasquez-Medrano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valenzuela, A.L., Vasquez-Medrano, R., Ibanez, J.G. et al. Remediation of Diquat-Contaminated Water by Electrochemical Advanced Oxidation Processes Using Boron-Doped Diamond (BDD) Anodes. Water Air Soil Pollut 228, 67 (2017). https://doi.org/10.1007/s11270-017-3244-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3244-5

Keywords

Navigation