Skip to main content
Log in

UV Light-Assisted Degradation of Methyl Orange, Methylene Blue, Phenol, Salicylic Acid, and Rhodamine B: Photolysis Versus Photocatalyis

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Methyl orange (MO), methylene blue (MB), phenol (F), salicylic acid (SA), and rhodamine B (ROD) were used as substrates during the photodegradation experiments in the absence and in the presence of nanostructured Ag/titania-silica. The catalyst was characterized by scanning electron microscopy (SEM), scanning transmission electron microscope high-angle annular dark field (STEM-HAADF), stereological analysis, nitrogen adsorption-desorption, and X-ray photoelectron spectroscopy (XPS) measurements. The results were fitted on pseudo-first and pseudo-second kinetic order models. The film diffusion was also determined. The photolysis degrades MO and F to a greater extent than the photocatalysis. The degradation of SA occurred at the same rate either by photolysis or by photocatalysis. MB was best removed by photocatalysis. With regard to the photocatalysis, the highest rates of film diffusion were obtained for MB, F, and ROD, meaning that these molecules crossed the film to arrive at the catalyst surface more rapidly than the others. For MO and MB, the results followed the pseudo-first-order kinetic model while for SA, F, and ROD, the pseudo-second-order kinetic model was more appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adán, C., Coronado, J. M., Bellod, R., Soria, J., & Yamaoka, H. (2006). Photochemical and photocatalytic degradation of salicylic acid with hydrogen peroxide over TiO2/SiO2 fibres. Applied Catalysis A: General, 303, 199–206.

    Article  Google Scholar 

  • Argun, M. E. (2008). Use of clinoptilolite for the removal of nickel ions from water: kinetics and thermodynamics. Journal of Hazardous Materials, 150(3), 587–595.

    Article  CAS  Google Scholar 

  • Bokhale, N. B., Bomble, S. D., Dalbhanjan, R. R., Mahale, D. D., Hinge, S. P., Banerjee, B. S., Mohod, A. V., & Gogate, P. R. (2014). Sonocatalytic and sonophotocatalytic degradation of rhodamine 6G containing wastewaters. Ultrasonics Sonochemistry, 21, 1797–1804.

    Article  CAS  Google Scholar 

  • Chen, R., Yin, C., Liu, H., & Wei, Y. (2015). Degradation of rhodamine B during the formation of Fe3O4 nanoparticles by air oxidation of Fe(OH)2. Journal of Molecular Catalysis A: Chemical, 397, 114–119.

    Article  CAS  Google Scholar 

  • Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: a review. Bioresource Technology, 97, 1061–1085.

    Article  CAS  Google Scholar 

  • Dufour, F., Pigeot-Remy, S., Durupthy, O., Cassaignon, S., Ruaux, V., Torelli, S., et al. (2015). Morphological control of TiO2 anatase nanoparticles: what is the good surface property to obtain efficient photocatalysts? Applied Catalysis B: Environmental, 174–175, 350–360.

    Article  Google Scholar 

  • Guettaï, N., & Ait Amar, H. (2005a). Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part I: parametric study. Desalination, 185, 427–437.

    Article  Google Scholar 

  • Guettaï, N., & Ait Amar, H. (2005b). Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part II: kinetic study. Desalination, 185, 439–448.

    Article  Google Scholar 

  • Günay, A., Arslankaya, E., & Tosun, I. (2007). Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. Journal of Hazardous Materials, 146, 362–371.

    Article  Google Scholar 

  • Inglezakis, V. J., Stylianou, M. A., Gkantzou, D., & Loizidou, M. D. (2007). Removal of Pb(II) from aqueous solutions by using clinoptilolite and bentonite as adsorbents. Desalination, 210, 248–256.

    Article  CAS  Google Scholar 

  • Ivanova, S., Penkova, A., Hidalgo, M. C., Navío, J. A., Romero-Sarria, F., Centeno, M. A., et al. (2015). Synthesis and application of layered titanates in the photocatalytic degradation of phenol. Applied Catalysis B: Environmental, 163, 23–29.

    Article  CAS  Google Scholar 

  • Jastrzezbska, A. M., Kurtycz, P., Olszyna, A., Karwowska, E., Miaskiewicz-Pezska, E., Załezska-Radziwiłł, M., et al. (2015). The impact of zeta potential and physicochemical properties of TiO2-based nanocomposites on their biological activity. International Journal of Applied Ceramic Technology, 12(6), 1157–1173.

    Article  Google Scholar 

  • Kabra, K., Chaudhary, R., & Sawhney, R. L. (2004). Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review. Industrial Engineering Chemical Resources, 43(24), 7683–7696.

    Article  CAS  Google Scholar 

  • Kim, J. R., & Kan, E. (2015). Heterogeneous photo-Fenton oxidation of methylene blue using CdS-carbon nanotube/TiO2 under visible light. Journal of Industrial and Engineering Chemistry, 21, 644–652.

    Article  CAS  Google Scholar 

  • Li, C. H. J., Zhang, Z., Ji, Y., Zhan, H., Xiao, F., Wang, D., Liu, B., & Su, F. (2015). Enhancement of photocatalytic properties of TiO2 nanoparticles doped with CeO2 and supported on SiO2 for phenol degradation. Applied Surface Science, 331(15), 17–26.

    Article  Google Scholar 

  • Li, L., Zhang, X., Zhang, W. L., Wang, X., Chen, X., & Gao, Y. (2014). Microwave-assisted synthesis of nanocomposite Ag/ZnO–TiO2 and photocatalytic degradation rhodamine B with different modes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 134–141.

    Article  CAS  Google Scholar 

  • Li, Y., Li, X., Li, J., & Yin, J. (2006). Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Resources, 40, 1119–1126.

    CAS  Google Scholar 

  • Lin, S. H., & Juang, R. S. (2002). Heavy metal removal from water by sorption using surfactant-modified montmorillonite. Journal of Hazardous Materials, B92, 315–326.

    Article  Google Scholar 

  • Mohamed, R. M., Baeissa, E. S., Mkhalid, I. A., & Al-Rayyani, M. A. (2013). Optimization of preparation conditions of ZnO–SiO2 xerogel by sol–gel technique for photodegradation of methylene blue dye. Applied Nanoscience, 3, 57–63.

    Article  CAS  Google Scholar 

  • Naeem, K., & Ouyang, F. (2013). Influence of supports on photocatalytic degradation of phenol and 4-chlorophenol in aqueous suspensions of titanium dioxide. Journal of Environmental Sciences, 25(2), 399–404.

    Article  CAS  Google Scholar 

  • Papoutsakis, S., Miralles-Cuevas, S., Gondrexon, N., Baup, S., Malato, S., & Pulgarin, C. (2015). Coupling between high-frequency ultrasound and solar photo-Fenton at pilot scale for the treatment of organic contaminants: an initial approach. Ultrasonics Sonochemistry, 22, 527–534.

    Article  CAS  Google Scholar 

  • Peter, A., Mihaly-Cozmuta, L., Mihaly-Cozmuta, A., Nicula, C., Barbu-Tudoran, L., & Baia, L. (2014). Efficiency of Cu/TiO2 to remove salicylic acid by photocatalytic degradation: kinetic modeling. Materials Technology, 39(3), 129–133.

    Article  Google Scholar 

  • Peter, A., Mihaly-Cozmuta, L., Mihaly-Cozmuta, A., Nicula, C., Cadar, C., Jastrzebska, A., et al. (2015a). Silver functionalized titania-silica xerogels: preparation, morphostructural and photocatalytic properties, kinetic modeling. Journal of Alloys and Compounds, 648, 890–902.

    Article  CAS  Google Scholar 

  • Peter, A., Mihaly-Cozmuta, L., Mihaly-Cozmuta, A., Nicula, C., Jastrzebska, A., Kurtycz, P., et al. (2015b). Morphology, structure, and photoactivity of two types of graphene oxide–TiO2 composites. Chemical Papers, 69(6), 839–855.

    Article  CAS  Google Scholar 

  • Ravi Chandra, M., Rao, T. S., Pammi, S. V. N., & Sreedhar, B. (2015). An enhanced visible light active rutile titania–copper/polythiophene nanohybrid material for the degradation of rhodamine B dye. Materials Science and Semiconductor Processing, 30, 672–681.

    Article  CAS  Google Scholar 

  • Sivakumar, S., Selvaraj, A., Ramasamy, A. K., & Balasubramanian, V. (2013). Enhanced photocatalytic degradation of reactive dyes over FeTiO3/TiO2 heterojunction in the presence of H2O2. Water, Air and Soil Pollution, 224(5), 1–13.

    Article  CAS  Google Scholar 

  • Soltani, T., & Entezari, M. H. (2013). Photolysis and photocatalysis of methylene blue by ferrite bismuth nanoparticles under sunlight irradiation. Journal of Molecular Catalysis A: Chemical, 377, 197–203.

    Article  CAS  Google Scholar 

  • Turki, A., Guillard, C., Dappozze, F., Ksibia, Z., Berhault, G., & Kochkar, H. (2015). Phenol photocatalytic degradation over anisotropic TiO2 nanomaterials: kinetic study, adsorption isotherms and formal mechanism. Applied Catalysis B: Environmental, 163, 404–414.

    Article  CAS  Google Scholar 

  • Vilhunen, S., Bosund, M., Käriäinen, M. L., Cameron, D., & Sillanpä, M. (2009). Atomic layer deposited TiO2 films in photodegradation of aqueous salicylic acid. Separation and Purification Technology, 66, 130–134.

    Article  CAS  Google Scholar 

  • Wakimoto, R., Kitamura, T., Ito, F., Usami, H., & Moriwaki, H. (2015). Degradation of methyl orange using C60 fullerene adsorbed on silica gel as a photocatalyst via visible-light induced electron transfer. Applied Catalysis B: Environmental, 166–167, 544–550.

    Article  Google Scholar 

Download references

Acknowledgements

We have conducted the research work within the framework of the SMARTPACK project, program MNT-ERANET, contract no. 7-065/26.09.2012, financed by UEFISCDI Romania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anca Peter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peter, A., Mihaly-Cozmuta, A., Nicula, C. et al. UV Light-Assisted Degradation of Methyl Orange, Methylene Blue, Phenol, Salicylic Acid, and Rhodamine B: Photolysis Versus Photocatalyis. Water Air Soil Pollut 228, 41 (2017). https://doi.org/10.1007/s11270-016-3226-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3226-z

Keywords

Navigation