Skip to main content

Advertisement

Log in

Removal of As(III) from Aqueous Solution Using Fe3O4 Nanoparticles: Process Modeling and Optimization Using Statistical Design

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, Extran (biodegradable surfactant) was used for the preparation of Fe3O4 nanoparticles by microemulsion process to improve removal efficiency of As(III) from aqueous solution. Fe3O4 nanoparticles were characterized by XRD, FTIR, FESEM, TEM, HRTEM, and VSM instrumental techniques. The effect of different parameters such as adsorbent dose, initial As(III) concentration, and solution pH were studied by response surface methodology (RSM) based on Box-Behnken design (BBD). The optimized condition for adsorption of As(III) from aqueous solution was obtained as adsorbent dose of 0.70 mg/g, solution pH of 7.7, and initial As(III) concentration of 33.32 mg/L. In this optimum condition, about 90.5% of As(III) was removed from the aqueous solution. Isotherm studies have been done at optimal condition, and it was observed that the Langmuir isotherm models were fitted well with experimental data having a high correlation coefficient of 0.993. From the Langmuir isotherm data, the maximum adsorption capacity of Fe3O4 nanoparticles was found to be 7.18 mg/g at pH 7.7 in room temperature. This study revealed that Fe3O4 nanoparticles can be used as an efficient, eco-friendly, and effective material for the adsorptive removal of As(III) from aqueous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Reference

  • Amini, M., Younesi, H., Bahramifar, N., Akbar, A., Lorestani, Z., Ghorbani, F., et al. (2008). Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger. Journal of Hazardous Materials, 154, 694–702. doi:10.1016/j.jhazmat.2007.10.114.

    Article  CAS  Google Scholar 

  • Benyettou, F., Milosevic, I., Jc, O., Motte, L., & Trabolsi, A. (2012). Ultra-small superparamagnetic iron oxide nanoparticles made to order. Bioanalysis and Biomedicine, 1–6. doi:10.4172/1948-593X.S5-006

  • Bilici Basken, M., Aysegul, P., & Turkman, A. (2010). Arsenate removal by coagulation using iron salts and organic polymers arsenate. Ekoloji, 74(February), 69–76. doi:10.5053/ekoloji.2010.7410

  • Bolt, H. M. (2012). Arsenic: an ancient toxicant of continuous public health impact, from Iceman Ötzi until now. Archives of Toxicology, 86(6), 825–830. doi:10.1007/s00204-012-0866-7.

    Article  CAS  Google Scholar 

  • Brandhuber, P., & Gary, A. (1998). Alternative methods for membrane filtration of arsenic from drinking water. Desalination, 117, 1–10.

    Article  CAS  Google Scholar 

  • Burten, M., & Kurien, K. C. (1959). Effects of solute concentration in radiolysis of water. The Journal of Physical Chemistry, 63, 899–904.

    Article  Google Scholar 

  • Chandra, V., Park, J., Chun, Y., Lee, J. W., Hwang, I., & Kim, K. S. (2010). Water-dispersible magnetite-reduced graphene oxide composite for arsenic removal. Acs Nano, 4(7), 3979–3986.

    Article  CAS  Google Scholar 

  • Chen, B., Zhu, Z., Ma, J., Qiu, Y., & Chen, J. (2013). Surfactant assisted Ce–Fe mixed oxide decorated multiwalled carbon nanotubes and their arsenic. Journal of Materials Chemistry A, 1, 11355–11367. doi:10.1039/c3ta11827d.

    Article  CAS  Google Scholar 

  • Chen, W., Parette, R., Zou, J., Cannon, F. S., & Dempsey, B. A. (2007). Arsenic removal by iron-modified activated carbon. Water research, 41, 1851–1858. doi:10.1016/j.watres.2007.01.052.

    Article  CAS  Google Scholar 

  • Demarco, M. J., Sengupta, A. K., & Greenleaf, J. E. (2003). Arsenic removal using a polymeric/inorganic hybrid sorbent. Water research, 37, 164–176.

    Article  CAS  Google Scholar 

  • Evans, M. (2003). Optimization of manufacturing processes: a response surface approach.

    Google Scholar 

  • Fakhri, A. (2014). Application of response surface methodology to optimize the process variables for fluoride ion removal using maghemite nanoparticles. Journal of Saudi Chemical Society, 18, 340–347. doi:10.1016/j.jscs.2013.10.010.

    Article  Google Scholar 

  • Fan, J., Yi, C., Lan, X., & Yang, B. (2013). Optimization of synthetic strategy of 4′4″(5″)-di-tert-butyldibenzo-18-crown-6 using response surface methodology. Org. Process Res. Dev., 17, 368–374. doi:10.1021/op3003163.

    Article  CAS  Google Scholar 

  • Feng, L., Cao, M., Ma, X., Zhu, Y., & Hu, C. (2012). Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. Journal of Hazardous Materials, 217–218, 439–446. doi:10.1016/j.jhazmat.2012.03.073.

    Article  Google Scholar 

  • Freundlich, H. (1906). User die adsorption in Losungen (adsorption in solution). Journal of Physical Chemistry, 57, 384–470.

    Google Scholar 

  • Ge, S., Shi, X., Sun, K., Li, C., Uher, C., Baker, J. R., et al. (2009). Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties. Journal of physical chemistry C, 113, 13593–13599.

    Article  CAS  Google Scholar 

  • Hao, J., Han, M. J., & Wang, X. M. (2009). Enhanced removal of arsenite from water by a mesoporous hybrid material—Thiol-functionalized silica coated activated alumina. Mesoporous and microporous materials, 124, 1–7. doi:10.1016/j.micromeso.2009.03.021.

    Article  CAS  Google Scholar 

  • Kapaj, S., Peterson, H., & Liber, K. (2006). Human health effects from chronic arsenic poisoning—a review. Journal of Environmental Science and Health, Part A, 4529(41), 2399–2428. doi:10.1080/10934520600873571.

    Article  Google Scholar 

  • Khalil, M. I. (2015). Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron (III) salts as precursors. Arabian Journal of Chemistry, 8, 279–284. doi:10.1016/j.arabjc.2015.02.008.

    Article  CAS  Google Scholar 

  • Korngold, E., Belayev, N., & Aronov, L. (2001). Removal of arsenic from drinking water by anion exchangers. Desalination, 141, 81–84.

    Article  CAS  Google Scholar 

  • Krishna, A. K., Satyanarayanan, M., & Govil, P. K. (2009). Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: a case study from Patancheru, Medak District, Andhra Pradesh, India. Journal of Hazardous Materials, 167, 366–373. doi:10.1016/j.jhazmat.2008.12.131.

    Article  CAS  Google Scholar 

  • Kvítek, L., Panác, A., Kilianová, M., Prucek, R., Filip, J., & Kolar, J. (2013). Remarkable efficiency of ultrafine superparamagnetic iron (III) oxide nanoparticles toward arsenate removal from aqueous environment. Chemosphere, 93, 2690–2697.

    Article  Google Scholar 

  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Journal of American Chemical Society, 38, 2221–2295.

    Article  CAS  Google Scholar 

  • Lesen, C., Capat, C., Ruta, F., & Udera, I. (2008). Characterisation of hybrid inorganic/organic polymer-type materials used for arsenic removal from drinking water. Reactive & functional polymers, 68, 1578–1586. doi:10.1016/j.reactfunctpolym.2008.08.011

  • Lu, T., Wang, J., Yin, J., Wang, A., Wang, X., & Zhang, T. (2013). Surfactant effects on the microstructures of Fe3O4 nanoparticles synthesized by microemulsion method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 675–683. doi:10.1016/j.colsurfa.2013.08.004.

    Article  CAS  Google Scholar 

  • Lunge, S., Singh, S., & Sinha, A. (2014). Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. Journal of Magnetism and Magnetic Materials, 356, 21–31. doi:10.1016/j.jmmm.2013.12.008.

    Article  CAS  Google Scholar 

  • Mandal, S., Mahapatra, S. S., Adhikari, S., & Patel, R. K. (2015). Modeling of arsenic (III) removal by evolutionary genetic programming and least square support vector machine models. Environmental Processes, 2, 145–172. doi:10.1007/s40710-014-0050-6.

    Article  CAS  Google Scholar 

  • Mandal, S., Sahu, M. K., & Patel, R. K. (2013). Adsorption studies of arsenic (III) removal from water by zirconium polyacrylamide hybrid material (ZrPACM-43). Water resources and industry, 4, 51–67.

    Article  Google Scholar 

  • Morillo, D., Pérez, G., & Valiente, M. (2015). Efficient arsenic(V) and arsenic(III) removal from acidic solutions with Novel Forager Sponge-loaded superparamagnetic iron oxide nanoparticles. Journal of Colloid and Interface Science, 453, 132–141.

    Article  CAS  Google Scholar 

  • Ning, R. Y. (2002). Arsenic removal by reverse osmosis. Desalination, 143, 237–241.

    Article  CAS  Google Scholar 

  • Prijic, S., Prosen, L., Cemazar, M., Scancar, J., Romih, R., Lavrencak, J., et al. (2012). Surface modified magnetic nanoparticles for immuno-gene therapy of murine mammary adenocarcinoma. Biomaterials, 33, 4379–4391. doi:10.1016/j.biomaterials.2012.02.061.

    Article  CAS  Google Scholar 

  • Qiu, P., Cui, M., Kang, K., Park, B., Son, Y., Khim, E., et al. (2014). Application of Box-Behnken design with response surface methodology for modeling and optimizing ultrasonic oxidation of arsenite with H2O2. Central European Journal of Chemistry, 12(2), 164–172. doi:10.2478/s11532-013-0360-y.

    Article  Google Scholar 

  • Roy, P., & Saha, A. (2010). Metabolism and toxicity of arsenic: a human carcinogen. Current Science, 82(1), 38–45.

    Google Scholar 

  • Sahu, R. C., Patel, R. K., & Ray, B. C. (2013). Process for extraction of fine iron from red mud. India, http://www.allindianpatents.com/patents/255321.

    Google Scholar 

  • Shaker, S., Zafarian, S., Chakra, C. S., & Rao, K. V. (2013). Preparation and characterization of magnetite nanoparticles by sol–gel method for water treatment. International journal of innovative research in science, engineering and technology, 2, 2969–2973.

    Google Scholar 

  • Singh, A. P., Srivastava, K. K., & Shekhar, H. (2009). Arsenic (III) removal from aqueous solutions by mixed adsorbent. Indian Journal of Chemical Technology, 16, 136–141.

    CAS  Google Scholar 

  • Singh, T. S., & Pant, K. K. (2004). Equilibrium, kinetics and thermodynamic studies for adsorption of As (III) on activated alumina. Separation and Purification Technology, 36, 139–147.

    Article  CAS  Google Scholar 

  • Su, S. N., Nie, H. L., Zhu, L. M., & Chen, T. X. (2009). Optimization of adsorption conditions of papain on dye affinity membrane using response surface methodology. Bioresource Technology, 100, 2336–2340. doi:10.1016/j.biortech.2008.11.048.

    Article  CAS  Google Scholar 

  • Subramanian, K. G., Raja, S., & Panigrahi, B. S. (2010). Estimation of CTAB in water by ion chromatography. Indian Journal of Science and Technology, 3(7), 718–719.

    CAS  Google Scholar 

  • Temkin, M. J., & Pyzhev, V. (1940). Recent modifications to Langmuir isotherms. Acta Physiochimica URSS, 12, 217–222. doi:10.1016/j.jhazmat.2008.12.093.

    Google Scholar 

  • Tiwari, D., & Mok, S. (2012). Novel hybrid materials in the remediation of ground waters contaminated with As (III) and As (V). Chemical Engineering Journal, 204–206, 23–31.

    Article  Google Scholar 

  • Zhang, Z., & Zheng, H. (2009). Optimization for decolorization of azo dye acid green 20 by ultrasound and H2O2 using response surface methodology. Journal of Hazardous Materials, 172, 1388–1393. doi:10.1016/j.jhazmat.2009.07.146.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Board of Research in Nuclear Sciences, DAE, India for funding the research project (2013/34/20/BRNS/2708). The authors are also thankful to the National Institute of Technology, Rourkela for providing the research facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siba Sankar Mahapatra or Raj Kishore Patel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, U.K., Sahu, M.K., Mahapatra, S.S. et al. Removal of As(III) from Aqueous Solution Using Fe3O4 Nanoparticles: Process Modeling and Optimization Using Statistical Design. Water Air Soil Pollut 228, 45 (2017). https://doi.org/10.1007/s11270-016-3224-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3224-1

Keywords

Navigation