Skip to main content
Log in

Isolation and Characterization of Altererythrobacter sp. DT for Biotreatment of and Sulfur Production from Thiosulfate-Bearing Industrial Wastewater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The objectives of the present study are to isolate thiosulfate-degrading bacterium and optimize its degradative conditions including temperature, pH, and thiosulfate concentrations required for bioremediation purposes. A heterotrophic thiosulfate-degrading bacterial strain DT was successfully isolated from saline soil and identified as Altererythrobacter sp. based on its physicochemical properties and 16S rDNA sequence analysis. It was a naturally occurring methionine auxotrophic strain that utilized only peptone, yeast extract, or several amino acids as the sole carbon source. Altererythrobacter sp. DT degraded thiosulfate via a distinctive disproportionation reaction which was characterized by accumulation of sulfate and elemental sulfur at a molar ratio of 1:1. Optimal conditions for both bacterial growth and thiosulfate metabolism were 25–30 °C and pH 6, respectively. In a fed-batch treatment system receiving liquid polysulfide wastewater, a high degradation rate of 407.3 mg S2O3 2−/(L h) and an elemental sulfur yield of nearly 50% were achieved for immobilized DT cells, indicating great potential of strain DT for future application in the treatment of and microbial production of elemental sulfur from thiosulfate-bearing industrial wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anandham, R., Indiragandhi, P., Madhaiyan, M., Chung, J., Ryu, K. Y., Jee, H. J., & Sa, T. (2007). Thiosulfate oxidation and mixotrophic growth of Methylobacterium oryzae. Canadian Journal of Microbiology, 53(7), 869–876.

    Article  CAS  Google Scholar 

  • Bak, F., & Pfenning, N. (1987). Chemolithotrophic growth of Desulfovibrio sulfodismutants sp. nov. by disproportionation of inorganic sulfur compounds. Archives of Microbiology, 147, 184–189.

    Article  CAS  Google Scholar 

  • Baquerizo, G., Chaneac, A., Arellano-Garcia, L., Gonzalez-Sanchez, A., & Revah, S. (2013). Biological removal of high loads of thiosulfate using a trickling filter under alkaline conditions. Mine Water and the Environment, 32, 278–284.

    Article  CAS  Google Scholar 

  • Cord-Ruwisch, R. (1985). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. Journal of Microbiological Methods, 4(1), 33–36.

    Article  CAS  Google Scholar 

  • Das, S. K., Mishra, A. K., Tindall, B. J., Rainey, F. A., & Stackebrandt, E. (1996). Oxidation of thiosulfate by a new bacterium, Bosea thiooxidans (strain BI-42) gen. nov., sp. nov.: analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. International Journal of Systematic Bacteriology, 46(4), 981–987.

    Article  CAS  Google Scholar 

  • González-Lara, J. M., Roca, A., Cruells, M., & Patiño, F. (2009). The oxidation of thiosulfates with copper sulfate. Application to an industrial fixing bath. Hydrometallurgy, 95(1–2), 8–14.

    Article  Google Scholar 

  • González-Sánchez, A., Meulepas, R., & Revah, S. (2008). Sulfur formation and recovery in a thiosulfate-oxidizing bioreactor. Environmental Technology, 29(8), 847–853.

    Article  Google Scholar 

  • Jagushte, M. V., & Mahajani, V. V. (1999). Insight into spent caustic treatment: on wet oxidation of thiosulfate to sulfate. Journal of Chemical Technology and Biotechnology, 74(5), 437–444.

    Article  CAS  Google Scholar 

  • Jorgensen, B. B., & Bak, F. (1991). Pathway and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark). Applied and Environmental Microbiology, 57(3), 847–856.

    CAS  Google Scholar 

  • Julia, R. M., Takuichi, S., & Andrew, J. W. (1998). Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Applied and Environmental Microbiology, 64(2), 795–799.

    Google Scholar 

  • Kadakol, J. C., Kamanavalli, C. M., & Shouche, Y. (2011). Biodegradation of carbofuran phenol by free and immobilized cells of Klebsiella pneumoniae ATCC13883T. World Journal of Microbiology and Biotechnology, 27(1), 25–29.

    Article  CAS  Google Scholar 

  • Kelly, D. P., & Wood, A. P. (1994). Synthesis and determination of thiosulfate and polythionates. Methods in Enzymology, 243, 475–501.

    Article  CAS  Google Scholar 

  • Kolmert, A., Wikstrom, P., & Hallberg, K. B. (2000). A fast and simple turbidometric method for the determination of sulfate in sulfate-reducing bacterial cultures. Journal of Microbiological Methods, 41(4), 179–184.

    Article  CAS  Google Scholar 

  • Kourkoutas, Y., Bekatorou, A., Banat, I. M., Marchant, R., & Koutinas, A. A. (2004). Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiology, 21(4), 377–397.

    Article  CAS  Google Scholar 

  • Kwon, K. K., Woo, J. H., Yang, S. H., Kang, S. G., Kim, S. J., Sato, T., & Kato, C. (2007). Altererythrobacter epoxidivorans gen. nov., sp. nov., an epoxide hydrolase-active, mesophilic marine bacterium isolated from cold-seep sediment, and reclassification of Erythrobacter luteolus Yoon et al. 2005 as Altererythrobacter luteolus comb. nov. International Journal of Systematic and Evolutionary Microbiology, 57(10), 2207–2211.

    Article  CAS  Google Scholar 

  • Lin, D. Q., & Gu, X. Y. (2009). Isolation, identification and characterization of thiosulfate-oxidizing bacterium TX. Microbiology, 36(11), 1638–1644 (In Chinese).

    CAS  Google Scholar 

  • Lin, B. L., Hosomi, M., & Murakami, A. (2002). Effects of high salinity and constituent organic compounds on treatment of photo-processing waste by a sulfur-oxidizing bacterial/granular activated carbon sludge system. Water Research, 36(4), 1076–1083.

    Article  CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275.

    CAS  Google Scholar 

  • Meade, H. M., Long, S. R., & Ruvkun, G. B. (1982). Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium melilotii induced by transposon Tn5 mutagenesis. Journal of Bacteriology, 149(1), 114–122.

    CAS  Google Scholar 

  • Narayan, K. D., Pandey, S. K., & Das, S. K. (2010). Characterization of Comamonas thiooxidans sp. nov., and comparison of thiosulfate oxidation with Comamonas testosteroni and Comamonas composti. Current Microbiology, 61(4), 248–253.

    Article  CAS  Google Scholar 

  • Pandey, S. K., Narayan, K. D., Bandyopadhyay, S., Nayak, K., & Das, S. K. (2009). Thiosulfate oxidation by Comamonas sp. S23 isolated from a sulfur spring. Current Microbiology, 58(5), 516–521.

    Article  CAS  Google Scholar 

  • Pethkar, A. V., & Paknikar, K. M. (2003). Thiosulfate biodegradation-silver biosorption process for the treatment of photofilm processing wastewater. Process Biochemistry, 38(6), 855–860.

    Article  CAS  Google Scholar 

  • Roy, A. B., & Trudinger, P. A. (1970). The analysis of some sulfur compounds. In The biochemistry of inorganic compounds of sulphur (pp. 59–90). Cambridge: University Press.

    Google Scholar 

  • Schreiber, D. C., & Pavlostathis, S. G. (1998). Biological oxidation of thiosulfate in mixed heterotrophic/autotrophic cultures. Water Research, 32(5), 1363–1372.

    Article  CAS  Google Scholar 

  • Sorokin, D. K., Tourva, T. P., & Muyzer, G. (2005). Citreicella thiooxidans gen. nov., sp. nov., a novel lithoheterotrophic sulfur-oxidizing bacterium from the Black Sea. Systematic and Applied Microbiology, 28(8), 679–687.

    Article  CAS  Google Scholar 

  • Spring, S., Jackel, U., Wagner, M., & Kampfer, P. (2004). Ottowia thiooxydans gen. nov., sp. nov., a novel facultatively anaerobic, N2O-producing bacterium isolated from activated sludge, and transfer of Aquaspirillum gracile to Halemonella gracilis gen. nov., comb. nov. International Journal of Systematic and Evolutionary Microbiology, 54(1), 99–106.

    Article  CAS  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.

    Article  CAS  Google Scholar 

  • Tenc-Popovic, M. E., Bogunovic, L. J., Jankovic, D. D., & Velickovic, A. D. (1997). New synthesis of liquid polysulfide polymers in the presence of hydrazine. I. Synthesis of linear polysulfide polymers from 1,1′-[methylenebis (oxy)]-bis-[2-chloroethane] and sodium tetrasulfide. Journal of Polymer Science Part A: Polymer Chemistry, 35(8), 1363–1367.

    Article  CAS  Google Scholar 

  • Truper, H. G., & Schlegel, H. G. (1964). Sulfur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek, 30(1), 225–238.

    Article  Google Scholar 

  • Vohra, M. S., Selimuzzaman, S. M., & Al-Suwaiyan, M. S. (2011). Aqueous phase thiosulfate removal using photo catalysis. International Journal of Environmental Research, 5(1), 247–254.

    CAS  Google Scholar 

Download references

Acknowledgements

The work described in this paper was fully supported by a research grant from the National Natural Science Foundation of China (project no. 50778089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Yang Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, X.Y., Dou, P.C. Isolation and Characterization of Altererythrobacter sp. DT for Biotreatment of and Sulfur Production from Thiosulfate-Bearing Industrial Wastewater. Water Air Soil Pollut 228, 28 (2017). https://doi.org/10.1007/s11270-016-3215-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3215-2

Keywords

Navigation