Skip to main content
Log in

Application of Activated Biomaterial in the Rapid Start-up and Stable Operation of Biological Processes for Removal Cadmium from Effluent

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

With the aim of treating effluent containing Cd2+, a low-cost and efficient technique has been established in this work. By a combination of sulfate-reducing bacteria (SRB), carboxymethyl konjac glucomannan (CMKGM), and nickel–iron bimetallic (Ni/Fe) nanoparticles, we greatly enhanced Cd2+ removal and bacteria resistance to metals toxicity. Furthermore, it had much higher removal efficiencies (99.72%) than SRB (57.38%), CMKGM (52.46%), and Ni/Fe (58.91%) systems after 48 h in the treat processes. The parameters effecting Cd2+ removal of this system were obtained: the initial Cd2+ concentrations 150 mg/L, optimum pH 7.0, optimum temperature 37 °C, optimum time 48 h, respectively. CMKGM and SRB played significant roles in Cd2+ adsorption as they contained many functional groups on their surfaces. In addition, SRB promoted the degeneration of inorganic contaminants. The mechanism of adsorption was clarified by a serious of analysis. Overall, this study provided a highly efficient activated biomaterial for the practical treatment of Cd2+ in wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alonso-Sande, M., Teijeiro-Osorio, D., Remuñán-López, C., & Alonso, M. J. (2009). Glucomannan, a promising polysaccharide for biopharmaceutical purposes. European Journal of Pharmaceutics and Biopharmaceutics, 72(2), 453–462.

    Article  CAS  Google Scholar 

  • Amin, N., Hussain, A., Alamzeb, S., & Begum, S. (2013). Accumulation of heavy metals in edible parts of vegetables irrigated with waste water and their daily intake to adults and children, District Mardan, Pakistan. Food Chemistry, 136(3–4), 1515–1523.

    Article  Google Scholar 

  • Bai, R. S., & Abraham, T. E. (2002). Studies on enhancement of Cr(VI) biosorption by chemically modified biomass of Rhizopus nigricans. Water Research, 36(5), 1224–1236.

    Article  CAS  Google Scholar 

  • Bai, R. S., & Abraham, T. E. (2003). Studies on chromium(VI) adsorption–desorption using immobilized fungal biomass. Bioresource Technology, 87(1), 17–26.

    Article  Google Scholar 

  • Bai, H., Kang, Y., Quan, H., Han, Y., Sun, J., & Feng, Y. (2013). Treatment of acid mine drainage by sulfate reducing bacteria with iron in bench scale runs. Bioresource Technology, 128(1), 818–822.

    Article  CAS  Google Scholar 

  • Cao, J., Li, Y., Zhang, G., Yang, C., & Cao, X. (2013). Effect of Fe(III) on the biotreatment of bioleaching solutions using sulfate-reducing bacteria. International Journal of Mineral Processing, 125(1), 27–33.

    Article  CAS  Google Scholar 

  • Chua, M., Chan, K., Hocking, T. J., Williams, P. A., Perry, C. J., Williams, M. A., Foster, T. J., Martin, D. R., Norton, I. T., Yoshimura, M., & Nishinari, K. (2000). A molecular description of the gelation mechanism of konjac mannan. Biomacromolecules, 1(3), 440–450.

    Article  Google Scholar 

  • Chun, C. L., Baer, D. R., Matson, D. W., Amonette, J. E., & Penn, R. L. (2010). Characterization and reactivity of iron nanoparticles prepared with added Cu, Pd, and Ni. Environmental Science and Technology, 44(13), 5079–5085.

    Article  CAS  Google Scholar 

  • Enomoto-Rogers, Y., Ohmomo, Y., & Iwata, T. (2013). Syntheses and characterization of konjac glucomannan acetate and their thermal and mechanical properties. Carbohydrate Polymers, 92(2), 1827–1834.

    Article  CAS  Google Scholar 

  • Greenlee, L. F., Torrey, J. D., Amaro, R. L., & Shaw, J. M. (2012). Kinetics of zero valent iron nanoparticle oxidation in oxygenated water. Environmental Science & Technology, 46, 12913–12920.

    Article  CAS  Google Scholar 

  • Guha, S., & Bhargava, P. (2005). Removal of chromium from synthetic plating waste by zero-valent iron and sulfate-reducing bacteria. Water Environment Research, 77(4), 411–416.

    Article  CAS  Google Scholar 

  • Ho, Y.-S., & Ofomaja, A. E. (2006). Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber. Hazardous Materials, 129(1–3), 137–142.

    Article  CAS  Google Scholar 

  • Hsu, H. F., Jhuo, Y. S., Kumar, M., Ma, Y. S., & Lin, J. G. (2010). Simultaneous sulfate reduction and copper removal by a PVA-immobilized sulfate reducing bacterial culture. Bioresource Technology, 101(12), 4354–4361.

    Article  CAS  Google Scholar 

  • Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., & Zhang, Q. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: a review. Hazardous Materials, 211–212(1), 317–331.

    Article  Google Scholar 

  • Katsuraya, K., Okuyama, K., Hatanaka, K., Oshima, R., Sato, T., & Matsuzaki, K. (2003). Constitution of konjac glucomannan: chemical analysis and 13CNMR spectroscopy. Carbohydrate Polymers, 53(2), 183–189.

    Article  CAS  Google Scholar 

  • Kheriji, J., Tabassi, D., & Hamrouni, B. (2015). Removal of Cd(II) ions from aqueous solution and industrial effluent using reverse osmosis and nanofiltration membranes. Water Science and Technology, 72(7), 1206–1216.

    Article  CAS  Google Scholar 

  • Koroskenyi, B., & McCarthy, S. P. (2001). Synthesis of acetylated konjac glucomannanan effect of degree of acetylation on water absorbency. Biomacromolecules, 2(3), 824–826.

    Article  CAS  Google Scholar 

  • Li, H., Liu, T., Li, Z., & Deng, L. (2008a). Low-cost supports used to immobilize fungi and reliable technique for removal hexavalent chromium in wastewater. Bioresource Technology, 99(7), 2234–2241.

    Article  CAS  Google Scholar 

  • Li, H., Li, Z., Liu, T., Xiao, X., Peng, Z., & Deng, L. (2008b). A novel technology for biosorption and recovery hexavalent chromium in wastewater by bio-functional magnetic beads. Bioresource Technology, 99(14), 6271–6279.

    Article  CAS  Google Scholar 

  • Liu, X., Hu, Q., Fang, Z., Zhang, X., & Zhang, B. (2009). Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal. Langmuir, 25(1), 3–8.

    Article  CAS  Google Scholar 

  • Martins, M., Faleiro, M. L., Barros, R. J., Verissimo, A. R., Barreiros, M. A., & Costa, M. C. (2009). Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination. Journal of Hazardous Materials, 166(2–3), 706–713.

    Article  CAS  Google Scholar 

  • Niu, C., Wu, W., Wang, Z., Li, S., & Wang, J. (2007). Adsorption of heavy metal ions from aqueous solution by crosslinked carboxymethyl konjac glucomannan. Hazardous Materials, 141(1), 209–214.

    Article  CAS  Google Scholar 

  • Postgate, J. R. (1984). The sulphate-reducing bacteria (2nd ed.). New York: Cambridge University Press.

    Google Scholar 

  • Singh, R. P., & Agrawal, M. (2010). Variations in heavy metal accumulation, growth and yield of rice plants grown at different sewage sludge amendment rates. Ecotoxicology and Environmental Safety, 73(4), 632–641.

    Article  CAS  Google Scholar 

  • Üzüm, Ç., Shahwan, T., Eroǧlu, A. E., Lieberwirth, I., Scott, T. B., & Hallam, K. R. (2008). Application of zero-valent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions. Chemical Engineering Journal, 144(2), 213–220.

    Article  Google Scholar 

  • Ye, J., Yin, H., Mai, B., Peng, H., Qin, H., He, B., & Zhang, N. (2010). Biosorption of chromium from aqueous solution and electroplating wastewater using mixture of Candida lipolytica and dewatered sewage sludge. Bioresource Technology, 101(11), 3893–3902.

    Article  CAS  Google Scholar 

  • Zhang, Z., Hub, S., Baig, S. A., Tang, J., & Xinhua, X. (2012). Catalytic dechlorination of Aroclor1242 by Ni/Fe bimetallic nanoparticles. Journal of Colloid and Interface Science, 385(1), 160–165.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Hunan Provincial Science & Technology Department for Environmental Pollution Control Project (2015JC3069) and the Cooperative Innovation Center of Engineering and New Products for Developmental Biology of Hunan Province, PR China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Yan, X., Liu, K. et al. Application of Activated Biomaterial in the Rapid Start-up and Stable Operation of Biological Processes for Removal Cadmium from Effluent. Water Air Soil Pollut 228, 31 (2017). https://doi.org/10.1007/s11270-016-3210-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3210-7

Keywords

Navigation