Skip to main content
Log in

Adsorption of Ni(II), Pb(II) and Zn(II) on Ca(NO3)2-Neutralised Red Mud

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study aimed to investigate a novel method of red mud neutralisation by Ca(NO3)2 (NRM), keeping its adsorption capacity in relation to natural red mud (RM) for Ni(II), Pb(II) and Zn(II). Results pointed out that the neutralisation process decreases the pH and electrical conductivity values on NRM due to reaction between the carbonate and bicarbonate alkalinity of red mud and calcium from calcium nitrate to form calcite (CaCO3). The maximum adsorption capacity values of RM and NRM, respectively, were 1.78 and 1.79 mmol g−1 for Ni(II), 2.13 and 2.23 mmol g−1 for Pb(II) and 1.14 and 1.06 mmol g−1 for Zn(II). Pseudo-second-order model is the main responsible for the adsorption of these metals on RM and NRM. The adsorption reaction is endothermic and these metals have affinity to RM and NRM. Thus, it is possible to neutralise the red mud with Ca(NO3)2 without adsorption capacity losses of Ni(II), Pb(II) and Zn(II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akin, I., Arslan, G., Tor, A., Ersoz, M., & Cengeloglu, Y. (2012). Arsenic (V) removal from underground water by magnetic nanoparticles synthesized from waste red mud. Journal of Hazardous Materials, 235–236, 62–68.

    Article  Google Scholar 

  • Antunes, M. L. P., Couperthwaite, S. J., Conceição, F. T., Jesus, C. P. C., Kiyohara, P. K., Coelho, A. C. V., & Frost, R. L. (2012). Red mud from Brazil: thermal behavior and physical properties. Industrial and Engineering Chemistry Research, 51, 775–779.

    Article  Google Scholar 

  • Apak, R., Guclu, K., & Turgut, M. H. (1998a). Modeling of copper (II), cadmium (II) and lead (II) adsorption on red mud. Journal of Colloid and Interface Science, 203, 122–130.

    Article  CAS  Google Scholar 

  • Apak, R., Tütem, E., Hügül, M., & Hizal, J. (1998b). Heavy metal cation retention by unconventional sorbents (red muds and fly ashes). Water Research, 32, 430–440.

    Article  CAS  Google Scholar 

  • Behnamfard, A., Salarirad, M. M., & Vegliò, F. (2014). Removal of Zn(II) ions from aqueous solutions by ethyl xanthate impregnated activated carbons. Hydrometallurgy, 144–145, 39–53.

    Article  Google Scholar 

  • Bhattacharyya, K. G., & Gupta, S. S. (2008). Influence of acid activation on adsorption of Ni(II) and Cu(II) on kaolinite and montmorillonite: kinetic and thermodynamic study. Chemical Engineering Journal, 136, 1–13.

    Article  CAS  Google Scholar 

  • Brasil. Departamento Nacional de Produção Mineral, Lima, T.M., Neves, C.A.R. (Coord.) (2014). Sumário Mineral, DNPM, Brasília.

  • Cengeloglu, Y., Tor, A., Ersoz, M., & Turgut, M. H. (2006). Removal of nitrate from aqueous solution by using red mud. Separation and Purification Technology, 51, 374–378.

    Article  CAS  Google Scholar 

  • Cheung, C. W., Porter, J. F., & Mckay, G. (2000). Sorption kinetics for the removal of cooper and zinc from effluents using bone char. Separation and Purification Technology, 19, 55–64.

    Article  CAS  Google Scholar 

  • Chowdhury, S., Mishra, R., Saha, P., & Kushwaha, P. (2011). Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination, 265, 159–168.

    Article  CAS  Google Scholar 

  • Conceição, F. T., Pichinelli, B. C., Silva, M. S. G., Moruzzi, R. B., Menegário, A. A., & Antunes, M. L. P. (2016). Cu(II) adsorption from aqueous solution using red mud activated by chemical and thermal treatment. Environmental Earth Sciences, 75, 362.

    Article  Google Scholar 

  • Costa, E. T. S., Guilherme, L. R. G., Curi, N., Lopes, G., Visoli, E. L., & Oliveira, L. C. A. (2009). Caracterização de subproduto da indústria de alumínio e seu uso na retenção de cádmio e chumbo em sistemas monoelementares. Química Nova, 32, 868–847.

    Article  CAS  Google Scholar 

  • Di Bernardo, L. (2005). Métodos e técnicas de tratamento de água, 2 V, RiMA, São Carlos.

  • Embrapa (1997). Manual de Métodos de Análise de Solo, 2° ed., Centro Nacional de Pesquisa de Solos, Rio de Janeiro.

  • Fu, J., Song, R., Mao, W., Wang, Q., An, S., Zeng, Q., & Zhua, H. (2010). Adsorption of disperse blue 2BLN by microwave activated red mud. Environmental Progress & Sustainable Energy, 30, 558–566.

    Article  Google Scholar 

  • Geyikçi, F., Kiliç, E., Çoruh, S., & Elevli, S. (2012). Modeling of lead adsorption from industrial sludge leachate on red mud by using RSM and ANN. Chemical Engineering Journal, 183, 53–59.

    Article  Google Scholar 

  • Grudić, V. V., Brašanac, S., Vukašinović-Pešić, V. L., & Blagojević, N. Z. (2013). Sorption of cadmium from water using neutralized red mud and activated neutralized red mud. ARPN Journal of Engineering and Applied Science, 8, 933–943.

    Google Scholar 

  • Gupta, V. K., Gupta, M., & Sharma, S. (2001). Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminum industry waste. Water Research, 35, 1125–1134.

    Article  CAS  Google Scholar 

  • Gupta, V. K., & Sharma, S. (2002). Removal of cadmium and zinc from aqueous solutions using red mud. Environmental Science and Technology, 36, 3612–3617.

    Article  CAS  Google Scholar 

  • Hanahan, C., McConchie, D., Pohl, J., Creelman, R., Clark, M., & Stocksiek, C. (2004). Chemistry of seawater neutralization of bauxite refinery residues (Red Mud). Environmental Engineering Science, 21, 125–138.

  • Hannachi, Y., Shapovalov, N. A., & Hannachi, A. (2010). Adsorption of Nickel from aqueous solution by the use of low-cost adsorbents. Korean Journal of Chemical Engineering, 27(1), 152–158.

    Article  CAS  Google Scholar 

  • Hind, A. R., Bhargava, S. K., & Grocott, S. C. (1999). The surface chemistry of Bayer process solids: a review. Colloids and Surfaces A, 146, 359–374.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & Mckay, G. (1998). A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Transactions of the Institution of Chemical Engineers, 76, 332–340.

    CAS  Google Scholar 

  • Liang, W., Couperthwaite, S. J., Kaur, G., Yan, C., Jonhstone, D. W., & Millar, G. I. J. (2014). Effect of strong acids on red mud structural and fluoride adsorption properties. Journal of Colloid and Interface Science, 423, 158–165.

    Article  CAS  Google Scholar 

  • Lopez, E., Soto, B., Arias, M., Nunez, A., Rubinos, D., & Barral, M. T. (1998). Adsorbent properties of red mud and its use for wastewater treatment. Water Research, 32, 1314–1322.

    Article  CAS  Google Scholar 

  • Mártires, R.A.C. (2012). Alumínio, in: Brasil. Departamento Nacional de Produção Mineral. Lima, T.M., Neves, C.A.R. (Coord.), Sumário Mineral, DNPM/DIPLAM, Brasília.

  • McConchie, D., Clark, M., Hanahan, C., McConchie, F. (2000). The use of seawater-neutralised bauxite refinery residues in the management of acid sulphate soils, sulphidric mini tailings and acid mine drainage. In K. Gaul, Ed., 3rd Queensland Environmental Conference: Sustainable Solutions for Industry and Government. Brisbane, QLD, Australia, 201–208.

  • Nadaroglu, H., Kalkan, E., & Demir, N. (2010). Removal of copper from aqueous solution using red mud. Desalination, 251, 90–95.

    Article  CAS  Google Scholar 

  • Önal, Y. (2006). Kinetics of adsorption of dyes from aqueous solution using activated carbon prepared from waste apricot. Journal of Hazardous Materials B, 137, 1719–1728.

    Article  Google Scholar 

  • Palmer, S. J., Nothling, M., Bakon, K. H., & Frost, R. L. (2010). Thermally activated seawater neutralised red mud used for removal of arsenate, vanadate and molybdate from aqueous solutions. Journal of Colloid and Interface Science, 342, 147–154.

    Article  CAS  Google Scholar 

  • Pulford, I. D., Hargreaves, J. S. J., Durisová, J., Kramulova, B., Girard, C., Balakrishnan, M., Batra, V. S., & Rico, J. L. (2012). Carbonised red mud—a new water treatment product made from a waste material. Journal of Environmental Management, 100, 59–64.

    Article  CAS  Google Scholar 

  • Rai, S., Wasewar, K. L., Mukhopadhyay, J., Yoo, C. K., & Uslu, H. (2012). Neutralization and utilization of red mud for its better waste management. Archives of Environmental Science, 6, 13–33.

    Google Scholar 

  • Ratnamala, G. M., Vidya Shetty, K., & Srinikethan, G. (2012). Removal of remazol brilliant blue dye from dye-contaminated water by adsorption using red mud: equilibrium, kinetic and thermodynamic studies. Water, Air, and Soil Pollution, 223, 6187–6199.

    Article  CAS  Google Scholar 

  • Sahu, R. C., Patel, R., & Ray, B. C. (2011). Adsorption of Zn(II) on activated red mud: neutralized by CO2. Desalination, 266, 93–97.

    Article  CAS  Google Scholar 

  • Santana, A. L. (2014). Alumínio, in: Brasil. Departamento Nacional de Produção Mineral. Lima, T.M., Neves, C.A.R. (Coord.), Sumário Mineral, DNPM, Brasília.

  • Santona, L., Castaldi, P., & Melis, P. (2006). Evaluation of the interaction mechanisms between red mud and heavy metals. Journal of Hazardous Materials, 136, 324–329.

    Article  CAS  Google Scholar 

  • Silva Filho, E. B., Alves, M. C. M., & Motta, M. (2007). Lama vermelha da indústria de beneficiamento de alumina: produção, características, disposição e aplicações alternativas. Revista Matéria, 12, 322–338.

    Article  Google Scholar 

  • Smiciklas, I., Smiljanic, S., Peric-Grujic, A., Šljivic-Ivanovic, M., Mitric, M., & Antonovic, D. (2014). Effect of acid treatment on red mud properties with implications on Ni(II) sorption and stability. Chemical Engineering Journal, 242, 27–35.

    Article  CAS  Google Scholar 

  • Smiljanic, S., Smiciklas, I., Peric-Grujic, A., Loncar, B., & Mitri, M. (2010). Rinsed and thermally treated red mud sorbents for aqueous Ni2+ ions. Chemical Engineering Journal, 162, 75–83.

    Article  CAS  Google Scholar 

  • Souza, K. C., Antunes, M. L. P., Couperthwaite, S. J., Conceição, F. T., Barrs, T. R., & Frost, R. (2013a). Adsorption of reactive dye on seawater-neutralised bauxite refinery residue. Journal of Colloid and Interface Science, 396, 210–214.

    Article  Google Scholar 

  • Souza, K. C., Antunes, M. L. P., & Conceição, F. T. (2013b). Adsorção do corante reativo azul 19 em solução aquosa por lama vermelha tratada quimicamente com peróxido de hidrogênio. Quim Nova, 36, 651–656.

    Article  Google Scholar 

  • Tchobanoglous, G., Burton, F.L., Stensel, H.D., 2003. Wastewater engineering: Treatment and reuse, fourth ed., Metcalf & Eddy, Inc., McGraw-Hill, Boston.

  • Vaclavikova, M., Misaelides, P., Gallios, G., Jakabsky, S., & Hredzak, S. (2005). Removal of cadmium, zinc, copper and lead by red mud, an iron oxides containing hydrometallurgical waste. Studies in Surface Science and Catalysis, 155, 517–525.

    Article  CAS  Google Scholar 

  • Verweij, W., (2014). A program for calculating CHemical Equilibria in AQuatic Systems, CHEAQS PRO 2014.1, Netherlands, 1999–2014.

  • Wang, S., Ang, H. M., & Tadé, M. O. (2008). Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere, 72(3), 1621–1635.

    Article  CAS  Google Scholar 

  • Zhou, Y., & Haynes, R. J. (2011). A comparison of inorganic solid wastes as adsorbents of heavy metal cations in aqueous solution and their capacity for desorption and regeneration. Water, Air, and Soil Pollution, 218, 457–470.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP—Processes No. 2009/02374-0 and 2013/00994-6), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—Process No. 480555/2009-5) and Companhia Brasileira de Alumínio (CBA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiano Tomazini da Conceição.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pichinelli, B.C., da Silva, M.S.G., da Conceição, F.T. et al. Adsorption of Ni(II), Pb(II) and Zn(II) on Ca(NO3)2-Neutralised Red Mud. Water Air Soil Pollut 228, 24 (2017). https://doi.org/10.1007/s11270-016-3208-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3208-1

Keywords

Navigation