Skip to main content
Log in

Enhanced Catalytic Activity and Stability of Ginger Peroxidase Immobilized on Amino-Functionalized Silica-Coated Titanium Dioxide Nanocomposite: A Cost-Effective Tool for Bioremediation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study describes the immobilization of ginger peroxidase on amino-functionalized silica-coated titanium dioxide nanocomposite and its application in bioremediation process. A dramatic enhancement in enzyme activity was observed after immobilization on nanosupport which was evident from the effectiveness factor (η) value of 1.76. Immobilization of enzyme on nanosupport was confirmed by transmission electron microscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy. Immobilized peroxidase exhibited higher activity in a broad range of pH and temperature as compared to free enzyme. Also, the thermostability of peroxidase was strikingly improved upon immobilization. After six repeated uses, the immobilized peroxidase retained around 62% of its dye decolorization activity. V max of the enzyme was changed to 35.01 μmol L−1 min−1 from 8.42 μmol L−1 min−1 after immobilization on nanocomposite, which was a fourfold increase as compared to the free enzyme. Circular dichroism spectroscopy demonstrated conformational changes in the secondary structure of the enzyme, a possible reason for the enhanced enzyme activity after immobilization. Immobilized peroxidase was highly efficient in the removal of acid yellow 42 dye in a stirred batch process, i.e., 90% of the dye was decolorized within 1.5 h as compared to the free enzyme decolorizing only 69% of the dye in the same period. Our results clearly demonstrate that this nanobioconjugate with enhanced catalytic activity, high stability, and very good reusability has remarkable potential for the treatment of aromatic pollutants present in wastewater.

Schematic representation of immobilization of ginger peroxidase on amino functionalized silica coated titanium dioxide nanocomposite and its use in dye decolorization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ansari, S. A., & Husain, Q. (2012). Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnology Advances, 30(3), 512–523.

    Article  CAS  Google Scholar 

  • Ansari, M. O., & Mohammad, F. (2011). Thermal stability, electrical conductivity and ammonia sensing studies on p-toluenesulfonic acid doped polyaniline: titanium dioxide (pTSA/Pani:TiO2) nanocomposites. Sensors and Actuators B: Chemical, 157(1), 122–129.

    Article  CAS  Google Scholar 

  • Ardao, I., Comenge, J., Benaiges, M. D., Alvaro, G., & Puntes, V. F. (2012). Rational nanoconjugation improves biocatalytic performance of enzymes: aldol addition catalyzed by immobilized rhamnulose-1-phosphate aldolase. Langmuir, 28(15), 6461–6467.

    Article  CAS  Google Scholar 

  • Barbosa, O., Ortiz, C., Berenguer-Murcia, A., Torres, R., Rodrigues, R. C., & Fernandez-Lafuente, R. (2015). Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnology Advances, 33(5), 435–456.

    Article  CAS  Google Scholar 

  • Bilal, M., Asgher, M., Shahid, M., & Bhatti, H. N. (2016). Characteristic features and dye degrading capability of agar–agar gel immobilized manganese peroxidase. International Journal of Biological Macromolecules, 86, 728–740.

    Article  CAS  Google Scholar 

  • Chen, T., Yang, W., Guo, Y., Yuan, R., Xu, L., & Yan, Y. (2014). Enhancing catalytic performance of β-glucosidase via immobilization on metal ions chelated magnetic nanoparticles. Enzyme and Microbial Technology, 63, 50–57.

    Article  Google Scholar 

  • Fatima, A., & Husain, Q. (2007). A role of glycosyl moieties in the stabilization of bitter gourd (Momordica charantia) peroxidase. International Journal of Biological Macromolecules, 41(1), 56–63.

    Article  CAS  Google Scholar 

  • Fatima, A., & Husain, Q. (2008). Purification and characterization of a novel peroxidase from bitter gourd (Momordica charantia). Protein and Peptide Letters, 15(4), 377–384.

    Article  CAS  Google Scholar 

  • Hermanova, S., Zarevucka, M., Bousa, D., Pumera, M., & Sofer, Z. (2015). Graphene dioxide immobilized enzymes show high thermal and solvent stability. Nanoscale, 7(13), 5852–5858.

    Article  CAS  Google Scholar 

  • Hu, T. G., Cheng, J. H., Zhang, B. B., Lou, W. Y., & Zong, M. H. (2015). Immobilization of alkaline protease on amino-functionalized magnetic nanoparticles and its efficient use for preparation of oat polypeptides. Industrial & Engineering Chemistry Research, 54(17), 4689–4698.

    Article  CAS  Google Scholar 

  • Husain, M., & Husain, Q. (2008). Applications of redox mediators in the treatment of organic pollutants by using oxidoreductive enzymes: a review. Critical Reviews in Environmental Science and Technology, 38(1), 1–42.

    Article  CAS  Google Scholar 

  • Husain, Q., & Ulber, R. (2011). Immobilized peroxidase as a valuable tool in the remediation of aromatic pollutants and xenobiotic compounds: a review. Critical Reviews in Environmental Science and Technology, 41(8), 770–804.

    Article  CAS  Google Scholar 

  • Husain, Q., Husain, M., & Kulshrestha, Y. (2009). Remediation and treatment of organopollutants mediated by peroxidases: a review. Critical Reviews in Biotechnology, 29(2), 94–119.

    Article  Google Scholar 

  • Jiang, Y., Tang, W., Gao, J., Zhou, L., & He, Y. (2014). Immobilization of horseradish peroxidase in phospholipid-templated titania and its applications in phenolic compounds and dye removal. Enzyme and Microbial Technology, 55, 1–6.

    Article  CAS  Google Scholar 

  • Jordan, J., Kumar, C. S., & Theegala, C. (2011). Preparation and characterization of cellulase-bound magnetite nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 68(2), 139–146.

    Article  CAS  Google Scholar 

  • Karim, Z., & Husain, Q. (2010a). Application of fly ash adsorbed peroxidase for the removal of bisphenol A in batch process and continuous reactor: assessment of genotoxicity of its product. Food and Chemical Toxicology, 48(12), 3385–3390.

    Article  CAS  Google Scholar 

  • Karim, Z., & Husain, Q. (2010b). Removal of anthracene from model wastewater by immobilized peroxidase from Momordica charantia in batch process as well as in a continuous spiral-bed reactor. Journal of Molecular Catalysis B: Enzymatic, 66(3), 302–310.

    Article  CAS  Google Scholar 

  • Khan, M. J., Qayyum, S., Alam, F., & Husain, Q. (2011). Effect of tin dioxide nanoparticle binding on the structure and activity of α-amylase from Bacillus amyloliquefaciens. Nanotechnology, 22(45), 455708.

    Article  Google Scholar 

  • Khan, M. J., Husain, Q., & Ansari, S. A. (2013). Polyaniline-assisted silver nanoparticles: a novel support for the immobilization of α-amylase. Applied Microbiology and Biotechnology, 97(4), 1513–1522.

    Article  CAS  Google Scholar 

  • Khan, A. A., Rao, R. A. K., Alam, N., & Shaheen, S. (2015). Formaldehyde sensing properties and electrical conductivity of newly synthesized polypyrrole-zirconium (IV) selenoiodate cation exchange nanocomposite. Sensors and Actuators B: Chemical, 211, 419–427.

    Article  CAS  Google Scholar 

  • Kim, M. I., Ham, H. O., Oh, S. D., Park, H. G., Chang, H. N., & Choi, S. H. (2006). Immobilization of Mucor javanicus lipase on effectively functionalized silica nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 39(1), 62–68.

    Article  CAS  Google Scholar 

  • Kim, M., Cho, S., Song, J., Son, S., & Jang, J. (2012a). Controllable synthesis of highly conductive polyaniline coated silica nanoparticles using self-stabilized dispersion polymerization. ACS Applied Materials & Interfaces, 4(9), 4603–4609.

    Article  CAS  Google Scholar 

  • Kim, H. J., Suma, Y., Lee, S. H., Kim, J. A., & Kim, H. S. (2012b). Immobilization of horseradish peroxidase onto clay minerals using soil organic matter for phenol removal. Journal of Molecular Catalysis B: Enzymatic, 83, 8–15.

    Article  CAS  Google Scholar 

  • Kim, S., Lee, J., Jang, S., Lee, H., Sung, D., & Chang, J. H. (2016). High efficient chromogenic catalysis of tetramethylbenzidine with horseradish peroxidase immobilized magnetic nanoparticles. Biochemical Engineering Journal, 105, 406–411.

    Article  CAS  Google Scholar 

  • Kuo, C. H., Liu, Y. C., Chang, C. M. J., Chen, J. H., Chang, C., & Shieh, C. J. (2012). Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles. Carbohydrate Polymers, 87(4), 2538–2545.

    Article  CAS  Google Scholar 

  • Lai, Y. C., & Lin, S. C. (2005). Application of immobilized horseradish peroxidase for the removal of p-chlorophenol from aqueous solution. Process Biochemistry, 40(3), 1167–1174.

    Article  CAS  Google Scholar 

  • Liang, C. Z., Sun, S. P., Li, F. Y., Ong, Y. K., & Chung, T. S. (2014). Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration. Journal of Membrane Science, 469, 306–315.

    Article  CAS  Google Scholar 

  • Lin, J., Fan, L., Miao, R., Le, X., Chen, S., & Zhou, X. (2015). Enhancing catalytic performance of laccase via immobilization on chitosan/CeO2 microspheres. International Journal of Biological Macromolecules, 78, 1–8.

    Article  CAS  Google Scholar 

  • Liu, S., & Han, M. Y. (2010). Silica‐coated metal nanoparticles. Chemistry--An Asian Journal, 5(1), 36–45.

    CAS  Google Scholar 

  • Lloret, L., Eibes, G., Feijoo, G., Moreira, M. T., Lema, J. M., & Hollmann, F. (2011). Immobilization of laccase by encapsulation in a sol–gel matrix and its characterization and use for the removal of estrogens. Biotechnology Progress, 27(6), 1570–1579.

    Article  CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.

    CAS  Google Scholar 

  • Mao, Y., Bao, Y., Han, D., Li, F., & Niu, L. (2012). Efficient one-pot synthesis of molecularly imprinted silica nanospheres embedded carbon dots for fluorescent dopamine optosensing. Biosensors and Bioelectronics, 38(1), 55–60.

    Article  CAS  Google Scholar 

  • Monier, M., Ayad, D. M., Wei, Y., & Sarhan, A. A. (2010). Immobilization of horseradish peroxidase on modified chitosan beads. International Journal of Biological Macromolecules, 46(1), 324–330.

    Article  CAS  Google Scholar 

  • Pinto, S. C., Rodrigues, A. R., Saraiva, J. A., & Lopes-da-Silva, J. A. (2015). Catalytic activity of trypsin entrapped in electrospun poly (ϵ-caprolactone) nanofibers. Enzyme and Microbial Technology, 79, 8–18.

    Article  Google Scholar 

  • Wang, L. B., Wang, Y. C., He, R., Zhuang, A., Wang, X., Zeng, J., & Hou, J. G. (2013). A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance. Journal of the American Chemical Society, 135(4), 1272–1275.

    Article  CAS  Google Scholar 

  • Wang, S., Guan, Y., Wang, L., Zhao, W., He, H., Xiao, J., et al. (2015). Fabrication of a novel bifunctional material of BiOI/Ag3VO4 with high adsorption–photocatalysis for efficient treatment of dye wastewater. Applied Catalysis B: Environmental, 168, 448–457.

    Article  Google Scholar 

  • Xie, W., & Zang, X. (2016). Immobilized lipase on core–shell structured Fe3O4–MCM-41 nanocomposites as a magnetically recyclable biocatalyst for interesterification of soybean oil and lard. Food Chemistry, 194, 1283–1292.

    Article  CAS  Google Scholar 

  • Xu, R., Chi, C., Li, F., & Zhang, B. (2013). Immobilization of horseradish peroxidase on electrospun microfibrous membranes for biodegradation and adsorption of bisphenol A. Bioresource Technology, 149, 111–116.

    Article  CAS  Google Scholar 

  • Xue, R., & Woodley, J. M. (2012). Process technology for multi-enzymatic reaction systems. Bioresource Technology, 115, 183–195.

    Article  CAS  Google Scholar 

  • Zeng, X., Cai, Y., Liao, X., Zeng, X., Li, W., & Zhang, D. (2011). Decolorization of synthetic dyes by crude laccase from a newly isolated Trametes trogii strain cultivated on solid agro-industrial residue. Journal of Hazardous Materials, 187(1), 517–525.

    Article  CAS  Google Scholar 

  • Zhai, R., Zhang, B., Wan, Y., Li, C., Wang, J., & Liu, J. (2013). Chitosan–halloysite hybrid-nanotubes: horseradish peroxidase immobilization and applications in phenol removal. Chemical Engineering Journal, 214, 304–309.

    Article  CAS  Google Scholar 

  • Zhang, L., Zhu, X., Zheng, S., & Sun, H. (2009). Photochemical preparation of magnetic chitosan beads for immobilization of pullulanase. Biochemical Engineering Journal, 46, 83–87.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Misha Ali is thankful to U.G.C., New Delhi, for the award of UGC-SRF fellowship. The University Sophisticated Instrumentation Facility (USIF), AMU Aligarh is gratefully acknowledged for the TEM and SEM analysis. The authors are extremely thankful to the Department of Chemistry, AMU Aligarh for the FT-IR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qayyum Husain.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M., Husain, Q., Alam, N. et al. Enhanced Catalytic Activity and Stability of Ginger Peroxidase Immobilized on Amino-Functionalized Silica-Coated Titanium Dioxide Nanocomposite: A Cost-Effective Tool for Bioremediation. Water Air Soil Pollut 228, 22 (2017). https://doi.org/10.1007/s11270-016-3205-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3205-4

Keywords

Navigation