Skip to main content
Log in

Effects of Operation Variables and Electro-kinetic Field on Soil Washing of Arsenic and Cesium with Potassium Phosphate

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The operation variables and electro-kinetic field (EKF) were investigated to enhance the remediation of arsenic (As)- and cesium (Cs)-contaminated soils with soil washing. Extractant types, concentrations, liquid/solid (L/S) ratios, solution pH values, washing temperatures, and agitation modes were important criteria to determine the efficiency of soil washing. The KH2PO4 was proved to be a suitable alternative to Na2EDTA in extracting As and Cs from contaminated soils. A 2-h washing with KH2PO4 at concentration of 0.01 M and L/S ratio of 20 mL g−1 showed the most efficient washing performance. In addition, the lower solution pH, higher temperature, and ultrasound also favored soil washing of As and Cs with KH2PO4. The EKF greatly enhanced metals extraction with soil washing. It offered acidic soil environment around the anode areas for the release of soluble Cs from its soil solid-phase components before soil washing. Moreover, the alkalization around the cathode areas also benefited the desorption of stable As since labile As were mainly presented in anionic forms. The effect of CA for neutralizing OH was proved to be limited, while the reversed subsequent EKF process effectively alleviated Cs precipitation generated during the initial EKF process. It also effectively restored soil pH altered by the initial EKF. The overall EKF (4 V cm−1) enhanced removal efficiency of As and Cs with soil washing from the anode area was 37 and 31%, respectively. Higher removal of As (52%) was obtained in the cathode area. Moreover, the reversed EKF resulted in another 28% removal of Cs in the initial cathode area which showed the capacity of EKF on continuous soil metal remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alloway, B. J. (1995). Heavy metals in soils. Glasgow: Blackie Academic & Professional.

    Book  Google Scholar 

  • Altin, A., & Degirmenci, M. (2005). Lead(II) removal from natural soils by enhanced electrokinetic remediation. Science of the Total Environment, 337(1–3), 1–10.

    Article  CAS  Google Scholar 

  • Andrade, M. D., Prasher, S. O., & Hendershot, W. H. (2007). Optimizing the molarity of a EDTA washing solution for saturated-soil remediation of trace metal contaminated soils. Environmental Pollution, 147, 781–790.

    Article  CAS  Google Scholar 

  • Azcue, J. M., Mudroch, A., Rosa, F., & Hall, G. E. M. (1994). Effects of abandoned gold mine tailings on the arsenic concentrations in water and sediments of Jack of Clubs lake B.C. Environmental Technology, 15, 669–678.

    Article  CAS  Google Scholar 

  • Barona, A., Aranguiz, I., & Elias, A. (2001). Metal associations in soils before and after EDTA extractive decontamination: implications for the effectiveness of further clean-up procedures. Environmental Pollution, 113, 75–85.

    Article  Google Scholar 

  • Bi, R., Schlaak, M., Siefert, E., Lord, R., & Connolly, H. (2011). Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum). Chemosphere, 83, 318–326.

    Article  CAS  Google Scholar 

  • Blake, G. R., & Harte, K. H. (1986). Bulk density. In A. Klute (Ed.), Methods of soil analysis. Part I: physical and mineralogical methods (pp. 363–375). Madison: American Society of Agronomy.

    Google Scholar 

  • Bolan, N., Kunhikrishnanm, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., Kirkham, M. B., & Scheckel, K. (2014). Remediation of heavy metal(loid)s contaminated soils—to mobilize or to immobilize? Journal of Hazardous Materials, 266, 141–166.

    Article  CAS  Google Scholar 

  • Bostick, B., Vairavamurthy, M., Karthikeyan, K. G., & Chorover, J. (2002). Cesium adsorption on clay minerals: an EXAFS spectroscopic investigation. Environmental Science & Technology, 36, 2670–2676.

    Article  CAS  Google Scholar 

  • Chang, K. P., Hsu, C. N., & Tamaki, H. (1993). Basic study of 137Cs sorption on soil. Journal of Science & Technology, 30, 1243–1247.

    CAS  Google Scholar 

  • Chen, J., Shiyab, S., Han, F. X., Monts, D. L., Waggoner, C. A., Yang, Z. M., & Su, Y. (2009). Bioaccumulation and physiological effects of mercury in Pteris vittata and Nephrolepis exaltata. Ecotoxicology, 18(1), 110–121.

    Article  CAS  Google Scholar 

  • Egli, T. (1988). An aerobic breakdown of chelating agents used in household detergents. Microbiological Sciences, 5, 36–41.

    CAS  Google Scholar 

  • Elliott, H. A., & Brown, G. A. (1989). Comparative evaluation of NTA and EDTA for extractive decontamination of Pb-polluted soils. Water, Air, & Soil Pollution, 45, 361–369.

    Article  CAS  Google Scholar 

  • Engelhart, D. P., Wagner, R. J. V., Meling, A., Wodtke, A. M., & Schäfer, T. (2015). Temperature programmed desorption of weakly bound adsorbates on Au(111). Surface Science, 650, 11–16.

    Article  Google Scholar 

  • Gabos, M. B., Abreu, C. A., & Coscione, A. R. (2009). EDTA assisted phytoremediation of a Pb contaminated soil: metal leaching and uptake by jack beans. Scientia Agricola, 66, 506–514.

    Article  CAS  Google Scholar 

  • Giannakopoulou, F., Haidouti, C., Chronopoulou, A., & Gasparatos, D. (2007). Sorption behavior of cesium on various soils under different pH levels. Journal of Hazardous Materials, 149, 553–556.

    Article  CAS  Google Scholar 

  • Giannis, A., Nikolaou, A., Pentari, D., & Gidarakos, E. (2009). Chelating agent-assisted electrokinetic removal of cadmium, lead and copper from contaminated soils. Environmental Pollution, 157, 3379–3386.

    Article  CAS  Google Scholar 

  • Gidarakos, E., & Giannis, A. (2006). Chelate agents enhanced electrokinetic remediation for removal cadmium and zinc by conditioning catholyte pH. Water, Air, & Soil Pollution, 172, 295–312.

    Article  CAS  Google Scholar 

  • Goh, K. H., & Lim, T. T. (2005). Arsenic fractionation in a fine soil fraction and influence of various anions on its mobility in the subsurface environment. Applied Geochemistry, 20, 229–239.

    Article  CAS  Google Scholar 

  • Han, F. X., & Banin, A. (1997). Long-term transformations and redistribution of potentially toxic heavy metals in arid-zone soils. I: under saturated conditions. Water, Air, & Soil Pollution, 95, 399–423.

    Google Scholar 

  • Han, F. X., & Banin, A. (1999). Long-term transformations and redistribution of potentially toxic heavy metals in arid-zone soils. II: under the field capacity regime. Water, Air, & Soil Pollution, 114, 221–250.

    Article  CAS  Google Scholar 

  • Han, F. X., Banin, A., Kingery, W. L., Triplett, G. B., Zhou, L. X., Zheng, S. J., & Ding, W. X. (2003). New approach to studies of redistribution of heavy metals in soils. Advances in Environment Research, 8(1), 113–120.

    Article  CAS  Google Scholar 

  • Han, F. X., Kingery, W. L., Selim, H. M., Gerard, P. D., Cox, M. S., & Oldham, J. L. (2004). Arsenic solubility and distribution in poultry waste and long-term amended soil. Science of the Total Environment, 320, 51–61.

    Article  CAS  Google Scholar 

  • Han, F. X., Su, Y., Monts, D. L., Waggoner, C. A., & Plodinec, M. J. (2006). Binding, distribution, and plant uptake of mercury in a soil from Oak Ridge, Tennessee, USA. Science of the Total Environment, 368, 753–768.

    Article  CAS  Google Scholar 

  • Han, F. X., Kingery, W. L., Hargreaves, J. E., & Walker, T. W. (2007). Effects of land uses on solid-phase distribution of micronutrients in selected vertisols of the Mississippi River Delta. Geoderma, 142, 96–103.

    Article  CAS  Google Scholar 

  • Han, F. X., Shiyab, S., Chen, J., Su, Y., Monts, D. L., Waggoner, C. A., & Matta, F. B. (2008). Extractability and bioavailability of mercury from a mercury sulfide contaminated soil from Oak Ridge, Tennessee, USA. Water, Air, & Soil Pollution, 194, 67–75.

    Article  CAS  Google Scholar 

  • Han, F. X., Su, Y., Shi, Z., Xia, Y., Tian, W., Philips, V., Monts, D. L., Gu, M., & Liang, Y. (2012). Mercury distribution and speciation in floodplain soils and uptake into native earthworms (Diplocardia spp.). Geoderma, 170, 261–268.

    Article  CAS  Google Scholar 

  • Hea, E., Im, J., Yang, K., Kim, Y., & Nam, K. (2015). Changes in soil toxicity by phosphate-aided soil washing: effect of soil characteristics, chemical forms of arsenic, and cations in washing solutions. Chemosphere, 119, 1399–1405.

    Article  Google Scholar 

  • Hong, J., & Pintauro, P. N. (1996). Desorption–complexation–dissolution characteristics of adsorbed cadmium from kaolin by chelators. Water, Air, & Soil Pollution, 86, 35–50.

    Article  CAS  Google Scholar 

  • Hwang, S. S., Park, J. S., & Namkoong, W. (2007). Ultrasonic-assisted extraction to release heavy metals from contaminated soil. Journal of Industrial & Engineering Chemistry, 13, 650–656.

    CAS  Google Scholar 

  • Jackson, M. L. (1958). Soil chemical analysis. New York: Prentic Hall. Inc.

    Google Scholar 

  • Jackson, B. P., & Miller, W. P. (2000). Effectiveness of phosphate and hydroxide for desorption of arsenic and selenium species from iron oxides. Soil Science Society of America Journal, 64, 1616–1622.

    Article  CAS  Google Scholar 

  • Kedziorek, M. A., Dupuy, A., Bourg, A. C. M., & Compere, F. (1998). Leaching of Cd and Pb from polluted soil during the percolation of EDTA: laboratory column experiments modeled with a non-equilibrium solubilization step. Environmental Science & Technology, 32, 1609–1614.

    Article  CAS  Google Scholar 

  • Khan, M. M. H., Sakauchi, F., Sonoda, T., Washio, M., & Mori, M. (2003). Magnitude of arsenic toxicity in tube-well drinking water in Bangladesh and its adverse effects on human health including cancer: evidence from a review of the literature. Asian Pacific Journal of Cancer Prevention, 4, 7–14.

    CAS  Google Scholar 

  • Kim, C., & Ong, S. K. (1999). Recycling of lead-contaminated EDTA wastewater. Journal of Hazardous Materials, 69, 273–286.

    Article  CAS  Google Scholar 

  • Kim, C., Lee, Y., & Ong, S. K. (2003). Factors affecting EDTA extraction of lead from lead-contaminated soils. Chemosphere, 51, 845–853.

    Article  CAS  Google Scholar 

  • Kim, D. H., Jeon, C. S., Baek, K., Ko, S. H., & Yang, J. S. (2008). Electrokinetic remediation of fluorine-contaminated soil: conditioning of anolyte. Journal of Hazardous Materials, 161, 565–569.

    Article  Google Scholar 

  • Kim, K. J., Cho, J. M., Baek, K., Yang, J. S., & Ko, S. H. (2010). Electrokinetic removal of chloride and sodium from tidelands. Journal of Applied Electrochemistry, 29, 1139–1144.

    Article  Google Scholar 

  • Kim, K. J., Kim, D. H., Yoo, J. C., & Baek, K. (2011). Electrokinetic extraction of heavy metals from dredged marine sediment. Separation and Purification Technology, 79, 164–169.

    Article  CAS  Google Scholar 

  • Kim, G. N., Kim, S. S., Park, H. M., Kim, W. S., Park, U. R., & Moon, J. K. (2013). Cs-137 and Cs-134 removal from radioactive ash using washing-electrokinetic equipment. Annals of Nuclear Energy, 57, 311–317.

    Article  CAS  Google Scholar 

  • Kirpichtchikova, T. A., Manceau, A., Spadini, L., Panfili, F., Marcus, M. A., & Jacquet, T. (2006). Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling. Geochimica et Cosmochimica Acta, 70, 2163–2190.

    Article  CAS  Google Scholar 

  • Ko, I., Chang, Y. Y., Lee, C. H., & Kim, K. W. (2005). Assessment of pilot-scale acid washing of soil contaminated with As, Zn and Ni using the BCR three-step sequential extraction. Journal of Hazardous Materials, 127, 1–13.

    Article  CAS  Google Scholar 

  • Labanowski, J., Monna, F., Bermond, A., Cambier, P., Fernandez, C., Lamy, I., & vanOort, F. (2008). Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs citrate. Environmental Pollution, 152, 693–701.

    Article  CAS  Google Scholar 

  • Lee, M., Paik, I. S., Do, W., Kim, I., Lee, Y., & Lee, S. (2007). Soil washing of As contaminated stream sediments in the vicinity of an abandoned mine in Korea. Environmental Geochemistry and Health, 29, 319–329.

    Article  CAS  Google Scholar 

  • Lesa, B., Aneggi, E., Rossi, G., Comuzzi, C., & Goi, D. (2009). Bench-scale tests on ultrasound-assisted acid washing and thermal desorption of mercury from dredging sludge and other solid matrices. Journal of Hazardous Materials, 171, 647–653.

    Article  CAS  Google Scholar 

  • Lestan, D., Lu, C. L., & Li, X. D. (2008). The use of chelating agents in the remediation of metal-contaminated soils: a review. Environmental Pollution, 153, 3–13.

    Article  CAS  Google Scholar 

  • Liao, X., Li, Y., & Yan, X. (2016). Removal of heavy metals and arsenic from a co-contaminated soil by sieving combined with washing process. Journal of Environmental Science, 41(3), 202–210.

    Article  Google Scholar 

  • Lim, T. T., Tay, J. H., & Wang, J. Y. (2004). Chelating-agent-enhanced heavy metal extraction from a contaminated acidic soil. Journal of Environmental Engineering, 130, 59–66.

    Article  CAS  Google Scholar 

  • Lusa, M., Bomberg, M., Virtanen, S., Lempinen, J., Aromaa, H., Knuutinen, J., & Lehto, J. (2015). Factors affecting the sorption of cesium in a nutrient-poor boreal bog. Journal of Environmental Radioactivity, 147, 22–32.

    Article  CAS  Google Scholar 

  • Ma, L. Q., Komar, K. M., Tu, C., Zhang, W., Cai, Y., & Kennelley, E. D. (2001). A fern that hyperaccumulates arsenic. Nature, 409(6820), 579–579.

    Article  CAS  Google Scholar 

  • Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: a review. Talanta, 58, 201–235.

    Article  CAS  Google Scholar 

  • Mao, X. Y., Han, F. X., Shao, X. H., Guo, K., McComb, J., Arslan, Z., & Zhang, Z. Y. (2015). Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil. Ecotoxicology and Environmental Safety, 125, 16–24.

    Article  Google Scholar 

  • Mason, T. J., Collings, A., & Sumel, A. (2004). Sonic and ultrasonic removal of chemical contaminants from soil in the laboratory and on a large scale. Ultrasonics Sonochemistry, 11, 205–210.

    Article  CAS  Google Scholar 

  • Maturi, K., & Reddy, K. R. (2008). Extraction of mixed contaminants from different soil types. Soil and Sediment Contamination, 17(6), 586–608.

    Article  CAS  Google Scholar 

  • Merwin, I., Pruyne, P. T., Ebel, J. G., Manzell, K. L., & Lisk, D. J. (1994). Persistence, phytotoxicity and management of arsenic, lead and mercury residues in old orchard soils of New York State. Chemosphere, 29(6), 1361–1367.

    Article  CAS  Google Scholar 

  • Ng, Y., Gupta, B. S., & Hashim, M. A. (2014). Performance evaluation of two-stage electrokinetic washing as soil remediation method for lead removal using different wash solutions. Electrochimica Acta, 147, 9–18.

    Article  CAS  Google Scholar 

  • Nowack, B., & Sigg, L. (1997). Dissolution of Fe(III) (hydr)oxides by metal–EDTA complexes. Geochimica Cosmochimica Acta, 61, 951–963.

    Article  CAS  Google Scholar 

  • Okuda, M., Hashiguchi, T., Joyo, M., Tsukamoto, K., Endo, M., Matsumaru, K., Goto-Yamamoto, N., Yamaoka, H., Suzuki, K., & Shimoi, H. (2013). The transfer of radioactive cesium and potassium from rice to sake. Journal of Bioscience and Bioengineering, 116, 340–346.

    Article  CAS  Google Scholar 

  • Park, S. W., Lee, J. Y., Yang, J. S., Kim, K. J., & Baek, K. (2009). Electrokinetic remediation of contaminated soil with waste-lubricant oils and zinc. Journal of Hazardous Materials, 169, 1168–1172.

    Article  CAS  Google Scholar 

  • Peters, R. W. (1999). Chelant extraction of heavy metals from contaminated soils. Journal of Hazardous Materials, 66, 151–210.

    Article  CAS  Google Scholar 

  • Polettini, A., Pomi, R., & Rolle, E. (2007). The effect of operating variables on chelant-assisted remediation of contaminated dredged sediment. Chemosphere, 66, 866–877.

    Article  CAS  Google Scholar 

  • Puppala, S. K., Alshawabkeh, A. N., Acar, Y. B., Gale, R. J., & Bricka, M. (1997). Enhanced electrokinetic remediation of high sorption capacity soil. Journal of Hazardous Materials, 55, 203–220.

    Article  CAS  Google Scholar 

  • Quenea, K., Lamy, I., Winterton, P., Bermond, A., & Dumat, C. (2009). Interactions between metals and soil organic matter in various particle size fractions of soil contaminated with waste water. Geoderma, 149, 217–223.

    Article  CAS  Google Scholar 

  • Rahman, M. M., Chowdhury, U. K., Mukherjee, S. C., Mondal, B. K., Paul, K., Lodh, D. B., Biswas, B. K., Chanda, C. R., Basu, G. K., Saha, K. C., Roy, S., Das, R., Palit, S. K., Quamruzzaman, Q., & Chakraborti, D. (2001). Chronic arsenic toxicity in Bangladesh and West Bengal, India—a review and commentary. Journal of Toxicology, Clinical Toxicology, 39, 683–700.

    Article  CAS  Google Scholar 

  • Rubin, E. S. (1999). Toxic releases from power plants. Environmental Science & Technology, 33, 3062–3067.

    Article  CAS  Google Scholar 

  • Shen, Z., Chen, X., Jia, J., Qu, L., & Wang, W. (2007). Comparison of electrokinetic soil remediation methods using one fixed anode and approaching anodes. Environmental Pollution, 150, 193–199.

    Article  CAS  Google Scholar 

  • Steele, M. C., & Pichtel, J. (1998). Ex-situ remediation of a metal-contaminated superfund soil using selective extractants. Journal of Environmental Engineering, 124, 639–645.

    Article  CAS  Google Scholar 

  • Strawn, D. G., & Sparks, D. L. (2000). Effects of soil organic matter on the kinetics and mechanisms of Pb(II) sorption and desorption in soil. Soil Science Society of America Journal, 64, 144–156.

    Article  CAS  Google Scholar 

  • Sun, B., Zhao, F. J., Lombi, E., & McGrath, S. P. (2001). Leaching of heavy metals from contaminated soils using EDTA. Environmental Pollution, 113, 111–120.

    Article  CAS  Google Scholar 

  • Sun, Y. B., Zhou, Q. X., An, J., Liu, W. T., & Liu, R. (2009). Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with the hyperaccumulator plant. Geoderma, 150, 106–112.

    Article  CAS  Google Scholar 

  • Suslick, K. S. (1990). Sonochemistry. Science, 257(80), 1439–1445.

    Article  Google Scholar 

  • Taylor, P., Meegoda, J. N., & Veerawat, K. (2002). Ultrasound to decontaminate organics in dredged sediments. Soil & Sediment Contamination, 11, 91–116.

    Article  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Tokunaga, S., & Hakuta, T. (2002). Acid washing and stabilization of an artificial arsenic-contaminated soil. Chemosphere, 46, 31–38.

    Article  CAS  Google Scholar 

  • Tsang, D. C. W., Zhang, W. H., & Lo, I. M. C. (2007). Copper extraction effectiveness and soil dissolution issues of EDTA-flushing of contaminated soils. Chemosphere, 68, 234–243.

    Article  CAS  Google Scholar 

  • Tyler, G., Pahlsson, A. M., Bengtsson, G., Baath, E., & Tranvik, L. (1989). Heavy metal ecology and terrestrial plants, micro-organisms and invertebrates: a review. Water, Air, & Soil Pollution, 47, 189–215.

    Article  CAS  Google Scholar 

  • White, P. J., & Broadley, M. R. (2000). Mechanisms of caesium uptake by plants. New Phytologist, 147, 241–256.

    Article  CAS  Google Scholar 

  • Yeung, A. T., & Gu, Y. Y. (2011). A review on techniques to enhance electrochemical remediation of contaminated soils. Journal of Hazardous Materials, 195, 11–29.

    Article  CAS  Google Scholar 

  • Yeung, A. T., & Gu, Y. Y. (2012). Use of chelating agents in electrochemical remediation of contaminated soil. In C. Daniel, W. Tsang, M. Irene, C. Lo, & R. Y. Surampalli (Eds.), Chelating agents for land decontamination technologies (pp. 212–280). Reston: American Society of Civil Engineers.

    Chapter  Google Scholar 

  • Young, T., Su, S., Geun, W., Wook, J., Young, S., & Hwan, J. (2015). Adsorption and energetic heterogeneity properties of cesium ions on ion exchange resin. Journal of Industrial & Engineering Chemistry, 27, 260–267.

    Article  Google Scholar 

  • Zhang, W., Huang, H., Tan, F., Wang, H., & Qiu, R. (2010). Influence of EDTA washing on the species and mobility of heavy metals residual in soils. Journal of Hazardous Materials, 173, 369–376.

    Article  CAS  Google Scholar 

  • Zhou, D. M., Deng, C. F., & Cang, L. (2004). Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents. Chemosphere, 56, 265–273.

    Article  CAS  Google Scholar 

  • Zhuang, J., Flury, M., & Jin, Y. (2003). Colloid-facilitated Cs transport through watersaturated Hanford sediment and Ottawa sand. Environmental Science & Technology, 37, 4905–4911.

    Article  CAS  Google Scholar 

  • Zou, Z., Qiu, R., Zhang, W., Dong, H. Y., Zhao, Z. H., Zhang, T., Wei, X. G., & Cai, X. D. (2009). The study of operating variables in soil washing with EDTA. Environmental Pollution, 157, 229–236.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by U.S. Nuclear Regulatory Commission (NRC-HQ-84-15-G-0042 and NRC–HQ-12-G-38-0038) and U.S. Department of Commerce (NOAA) (NA11SEC4810001-003499). Mr. Mao was also supported by the Fundamental Research Funds for the Central Universities (2016B04314), the Special Fund for Hydro-scientific Research in the Public Interest (201301017), the Fundamental Research Fund for the Central Universities (2014B04814 and 2015B05814), the National Natural Science Foundation of China (51509068), the Jiangsu Planned Projects for Postdoctoral Research Funds (1501043A), and the China Postdoctoral Science Foundation (2015M581716).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyu Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, X., Han, F.X., Shao, X. et al. Effects of Operation Variables and Electro-kinetic Field on Soil Washing of Arsenic and Cesium with Potassium Phosphate. Water Air Soil Pollut 228, 15 (2017). https://doi.org/10.1007/s11270-016-3199-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3199-y

Keywords

Navigation