Skip to main content
Log in

Application of Thermally Treated Crushed Concrete Granules for the Removal of Phosphate: A Cheap Adsorbent with High Adsorption Capacity

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate phosphate removal using crushed concrete granules (CCGs). The CCGs were thermally treated at different temperatures (300, 500, 700, and 900 °C) for 3 h under anoxic conditions. The results showed that CCGs thermally treated at 700 °C (700TT-CCGs) were the most effective for the removal of phosphate. The equilibrium adsorption data fitted well the Langmuir isotherm model with a maximum phosphate adsorption capacity of 21.522 mg/g, higher than that of granular adsorbents in the literature. In pH experiments, phosphate adsorption by 700TT-CCGs decreased as initial pH increased from 3 to 5, but sharply increased above pH 5 (final pH 9.1), which was favorable for the formation of calcium phosphate precipitate. The effect of competing anions on phosphate adsorption follows the order: HCO3  > SO4 2− > NO3 , which is consistent with the reverse order of the shared charge. Column experiments showed no breakthrough of phosphate in the column packed with half 700TT-CCGs and half sand for over 300 h. This study demonstrates that CCGs can be used for phosphate removal from aqueous solution after thermal treatment, which is a simple and cheap way to improve the phosphate removal capacity of CCGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agyei, N. M., Strydom, C. A., & Potgieter, J. H. (2002). The removal of phosphate ions from aqueous solution by fly ash, slag, ordinary Portland cement and related blends. Cement and Concrete Research, 32(12), 1889–1897.

    Article  CAS  Google Scholar 

  • APHA (American Public Health Association). (1995). Standard methods for the examination of water and wastewater. DC: Washington.

    Google Scholar 

  • Barca, C., Gérente, C., Meyer, D., Chazarenc, F., & Andrès, Y. (2012). Phosphate removal from synthetic and real wastewater using steel slags produced in Europe. Water Research, 46(7), 2376–2384.

    Article  CAS  Google Scholar 

  • Barthélémy, K., Naille, S., Despas, C., Ruby, C., & Mallet, M. (2012). Carbonated ferric green rust as a new material for efficient phosphate removal. Journal of Colloid and Interface Science, 384(1), 121–127.

    Article  Google Scholar 

  • Boujelben, N., Bouzid, J., Elouear, Z., Feki, M., Jamoussi, F., & Montiel, A. (2008). Phosphorus removal from aqueous solution using iron coated natural and engineered sorbents. Journal of Hazardous Materials, 151(1), 103–110.

    Article  CAS  Google Scholar 

  • Buriánek, P., Skalický, M., & Grünwald, A. (2014). Study of phosphates adsorption from water by recycled concrete. Journal of Selcuk University Natural and Applied Science, 14–17, 103–112.

    Google Scholar 

  • Castaldi, P., Silvetti, M., Garau, G., & Deiana, S. (2010). Influence of the pH on the accumulation of phosphate by red mud (a bauxite ore processing waste). Journal of Hazardous Materials, 182(1), 266–272.

    Article  CAS  Google Scholar 

  • Chen, J., Kong, H., Wu, D., Hu, Z., Wang, Z., & Wang, Y. (2006). Removal of phosphate from aqueous solution by zeolite synthesized from fly ash. Journal of Colloid and Interface Science, 300(2), 491–497.

    Article  CAS  Google Scholar 

  • Chen, J., Kong, H., Wu, D., Chen, X., Zhang, D., & Sun, Z. (2007). Phosphate immobilization from aqueous solution by fly ashes in relation to their composition. Journal of Hazardous Materials, 139(2), 293–300.

    Article  CAS  Google Scholar 

  • Cheng, X., Huang, X., Wang, X., Zhao, B., Chen, A., & Sun, D. (2009). Phosphate adsorption from sewage sludge filtrate using zinc–aluminum layered double hydroxides. Journal of Hazardous Materials, 169(1), 958–964.

    Article  CAS  Google Scholar 

  • Clark, D., Gu, A. Z., & Neethling, J. B. (2005). Achieving extremely low effluent phosphorus in wastewater treatment. Waterscapes, 16(3), 15–17.

    Google Scholar 

  • Corinaldesi, V., & Moriconi, G. (2001). Role of chemical and mineral admixtures on performance and economics of recycled aggregate concrete. In Seventh CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete 2 (SP 199-50).

  • Corinaldesi, V., Giuggiolini, M., & Moriconi, G. (2002). Use of rubble from building demolition in mortars. Waste Management, 22(8), 893–899.

    Article  CAS  Google Scholar 

  • de Vicente, I., Merino-Martos, A., Cruz-Pizarro, L., & de Vicente, J. (2010). On the use of magnetic nano and microparticles for lake restoration. Journal of Hazardous Materials, 181(1), 375–381.

    Article  Google Scholar 

  • Han, Y. U., Park, S. J., Park, J. A., Choi, N. C., & Kim, S. B. (2009). Phosphate removal from aqueous solution by aluminum (hydr) oxide-coated sand. Environmental Engineering Research, 14(3), 164–169.

    Article  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465.

    Article  CAS  Google Scholar 

  • Huang, W. Y., Li, D., Liu, Z. Q., Tao, Q., Zhu, Y., Yang, J., & Zhang, Y. M. (2014). Kinetics, isotherm, thermodynamic, and adsorption mechanism studies of La(OH)3-modified exfoliated vermiculites as highly efficient phosphate adsorbents. Chemical Engineering Journal, 236, 191–201.

    Article  CAS  Google Scholar 

  • Huang, W., Chen, J., He, F., Tang, J., Li, D., Zhu, Y., & Zhang, Y. (2015). Effective phosphate adsorption by Zr/Al-pillared montmorillonite: insight into equilibrium, kinetics and thermodynamics. Applied Clay Science, 104, 252–260.

    Article  CAS  Google Scholar 

  • Johansson, L., & Gustafsson, J. P. (2000). Phosphate removal using blast furnace slag and opoka-mechanisms. Water Research, 34(1), 259–265.

    Article  CAS  Google Scholar 

  • Karaca, S., Gürses, A., Ejder, M., & Açıkyıldız, M. (2006). Adsorptive removal of phosphate from aqueous solutions using raw and calcinated dolomite. Journal of Hazardous Materials, 128(2), 273–279.

    Article  CAS  Google Scholar 

  • Khatib, J. M. (2005). Properties of concrete incorporating fine recycled aggregate. Cement and Concrete Research, 35(4), 763–769.

    Article  CAS  Google Scholar 

  • Khelifi, O., Kozuki, Y., Murakami, H., Kurata, K., & Nishioka, M. (2002). Nutrients adsorption from seawater by new porous carrier made from zeolitized fly ash and slag. Marine Pollution Bulletin, 45(1), 311–315.

    Article  CAS  Google Scholar 

  • Korean Ministry of Environment (2014). National wastes generation and present state of disposal.

  • Kostura, B., Kulveitova, H., & Leško, J. (2005). Blast furnace slags as sorbents of phosphate from water solutions. Water Research, 39(9), 1795–1802.

    Article  CAS  Google Scholar 

  • Lalley, J., Han, C., Mohan, G. R., Dionysiou, D. D., Speth, T. F., Garland, J., & Nadagouda, M. N. (2015). Phosphate removal using modified Bayoxide® E33 adsorption media. Environmental Science: Water Research & Technology, 1(1), 96–107.

    CAS  Google Scholar 

  • Lee, S. H., Vigneswaran, S., & Chung, Y. (1997). A detailed investigation of phosphorus removal in soil and slag media. Environmental Technology, 18(7), 699–709.

    Article  CAS  Google Scholar 

  • Li, Y., Liu, C., Luan, Z., Peng, X., Zhu, C., Chen, Z., Zhang, Z., Fan, J., & Jia, Z. (2006). Phosphate removal from aqueous solution using raw and activated red mud and fly ash. Journal of Hazardous Materials, 137(1), 374–383.

    Article  CAS  Google Scholar 

  • Li, H., Ru, J., Yin, W., Liu, X., Wang, J., & Zhang, W. (2009). Removal of phosphate from polluted water by lanthanum doped vesuvianite. Journal of Hazardous Materials, 168(1), 326–330.

    Article  CAS  Google Scholar 

  • Liu, H., Sun, X., Yin, C., & Hu, C. (2008). Removal of phosphate by mesoporous ZrO2. Journal of Hazardous Materials, 151(2), 616–622.

    Article  CAS  Google Scholar 

  • Liu, T., Wu, K., & Zeng, L. (2012). Removal of phosphorus by a composite metal oxide adsorbent derived from manganese ore tailings. Journal of Hazardous Materials, 217, 29–35.

    Article  Google Scholar 

  • Lǚ, J., Liu, H., Liu, R., Zhao, X., Sun, L., & Qu, J. (2013). Adsorptive removal of phosphate by a nanostructured Fe–Al–Mn trimetal oxide adsorbent. Powder Technology, 233, 146–154.

    Article  Google Scholar 

  • McBride, M. B. (1994). Environmental chemistry of soils. New York: Oxford University Press, Inc.

    Google Scholar 

  • Moriconi, G., Corinaldesi, V., & Antonucci, R. (2003). Environmentally-friendly mortars: a way to improve bond between mortar and brick. Materials and Structures, 36(10), 702–708.

    Article  CAS  Google Scholar 

  • Naik, T. R., & Moriconi, G. (2005). Environmental-friendly durable concrete made with recycled materials for sustainable concrete construction. In International Symposium on Sustainable Development of Cement (pp. 5–7). Toronto, Ontario, October: Concrete and Concrete Structures.

    Google Scholar 

  • Ogata, F., Tominaga, H., Kangawa, M., Inoue, K., & Kawasaki, N. (2012). Characteristics of granular boehmite and its ability to adsorb phosphate from aqueous solution. Chemical and Pharmaceutical Bulletin, 60(8), 985–988.

    Article  CAS  Google Scholar 

  • Park, S. J., Lee, C. G., Kim, J. H., Kim, S. B., Chang, Y. Y., & Yang, J. K. (2015). Bimetallic oxide-coated sand filter for simultaneous removal of bacteria, Fe (II), and Mn (II) in small- and pilot-scale column experiments. Desalination and Water Treatment, 54(12), 3380–3391.

    Article  CAS  Google Scholar 

  • Ren, Z., Shao, L., & Zhang, G. (2012). Adsorption of phosphate from aqueous solution using an iron–zirconium binary oxide sorbent. Water, Air, & Soil Pollution, 223(7), 4221–4231.

    Article  CAS  Google Scholar 

  • Rittmann, B. E., & McCarty, P. L. (2002). Environmental biotechnology. McGraw Hill Korea, pp. 579–590.

  • Su, Y., Cui, H., Li, Q., Gao, S., & Shang, J. K. (2013). Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles. Water Research, 47(14), 5018–5026.

    Article  CAS  Google Scholar 

  • Summers, R. S., Knappe, D. R. U., & Snoeyink, V. L. (2011). Adsorption of organic compounds by activated carbon, In: Edzwald, J.K. (Eds.), Water quality and treatment: a handbook on drinking water, 6th edition, McGraw-Hill.

  • Tam, V. W., & Tam, C. M. (2006). A review on the viable technology for construction waste recycling. Resources, Conservation and Recycling, 47(3), 209–221.

    Article  Google Scholar 

  • Tian, S., Jiang, P., Ning, P., & Su, Y. (2009). Enhanced adsorption removal of phosphate from water by mixed lanthanum/aluminum pillared montmorillonite. Chemical Engineering Journal, 151(1), 141–148.

    Article  CAS  Google Scholar 

  • Tseng, Y. S., Huang, C. L., & Hsu, K. C. (2005). The pozzolanic activity of a calcined waste FCC catalyst and its effect on the compressive strength of cementitious materials. Cement and Concrete Research, 35(4), 782–787.

    Article  CAS  Google Scholar 

  • Wang, S. L., Cheng, C. Y., Tzou, Y. M., Liaw, R. B., Chang, T. W., & Chen, J. H. (2007). Phosphate removal from water using lithium intercalated gibbsite. Journal of Hazardous Materials, 147(1), 205–212.

    Article  CAS  Google Scholar 

  • Wang, Z., Nie, E., Li, J., Yang, M., Zhao, Y., Luo, X., & Zheng, Z. (2012). Equilibrium and kinetics of adsorption of phosphate onto iron-doped activated carbon. Environmental Science and Pollution Research, 19(7), 2908–2917.

    Article  CAS  Google Scholar 

  • Wang, X., Chen, J., Kong, Y., & Shi, X. (2014). Sequestration of phosphorus from wastewater by cement-based or alternative cementitious materials. Water Research, 62, 88–96.

    Article  CAS  Google Scholar 

  • Wei, X., Viadero, R. C., & Bhojappa, S. (2008). Phosphorus removal by acid mine drainage sludge from secondary effluents of municipal wastewater treatment plants. Water Research, 42(13), 3275–3284.

    Article  CAS  Google Scholar 

  • Xiong, J., He, Z., Mahmood, Q., Liu, D., Yang, X., & Islam, E. (2008). Phosphate removal from solution using steel slag through magnetic separation. Journal of Hazardous Materials, 152(1), 211–215.

    Article  CAS  Google Scholar 

  • Yan, L. G., Xu, Y. Y., Yu, H. Q., Xin, X. D., Wei, Q., & Du, B. (2010). Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites. Journal of Hazardous Materials, 179(1), 244–250.

    Article  CAS  Google Scholar 

  • Yao, S., Li, J., & Shi, Z. (2009). Phosphate ion removal from aqueous solution using an iron oxide-coated fly ash adsorbent. Adsorption Science and Technology, 27(6), 603–614.

    Article  Google Scholar 

  • Yin, H., Yun, Y., Zhang, Y., & Fan, C. (2011). Phosphate removal from wastewaters by a naturally occurring, calcium-rich sepiolite. Journal of Hazardous Materials, 198, 362–369.

    Article  CAS  Google Scholar 

  • Yoon, S. Y., Lee, C. G., Park, J. A., Kim, J. H., Kim, S. B., Lee, S. H., & Choi, J. W. (2014). Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles. Chemical Engineering Journal, 236, 341–347.

    Article  CAS  Google Scholar 

  • Yu, S. H., Dong, X. L., Gong, H., Jiang, H., & Liu, Z. G. (2012). Adsorption kinetic and thermodynamic studies of phosphate onto tantalum hydroxide. Water Environment Research, 84(12), 2115–2122.

    Article  CAS  Google Scholar 

  • Yue, Q., Zhao, Y., Li, Q., Li, W., Gao, B., Han, S., Qi, Y., & Yu, H. (2010). Research on the characteristics of red mud granular adsorbents (RMGA) for phosphate removal. Journal of Hazardous Materials, 176(1), 741–748.

    Article  CAS  Google Scholar 

  • Zamparas, M., Gianni, A., Stathi, P., Deligiannakis, Y., & Zacharias, I. (2012). Removal of phosphate from natural waters using innovative modified bentonites. Applied Clay Science, 62, 101–106.

    Article  Google Scholar 

  • Zeng, L., Li, X., & Liu, J. (2004). Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings. Water Research, 38(5), 1318–1326.

    Article  CAS  Google Scholar 

  • Zhang, G., Liu, H., Liu, R., & Qu, J. (2009). Removal of phosphate from water by a Fe–Mn binary oxide adsorbent. Journal of Colloid and Interface Science, 335(2), 168–174.

    Article  CAS  Google Scholar 

  • Zhang, J., Shen, Z., Shan, W., Mei, Z., & Wang, W. (2011). Adsorption behavior of phosphate on lanthanum (III)-coordinated diamino-functionalized 3D hybrid mesoporous silicates material. Journal of Hazardous Materials, 186(1), 76–83.

    Article  CAS  Google Scholar 

  • Zhang, L., Liu, J., Wan, L., Zhou, Q., & Wang, X. (2012). Batch and fixed-bed column performance of phosphate adsorption by lanthanum-doped activated carbon fiber. Water, Air, & Soil Pollution, 223(9), 5893–5902.

    Article  CAS  Google Scholar 

  • Zhou, H., Jiang, Z., & Wei, S. (2013). A novel absorbent of nano-Fe loaded biomass char and its enhanced adsorption capacity for phosphate in water. Journal of Chemistry, 2013(Article ID 649868), 1–9.

Download references

Acknowledgements

This work was supported by the project entitled “Development of Sustainable Remediation Technology for Marine Contaminated Sediments” funded by the Korean Ministry of Oceans and Fisheries, Grant No. 20110110. This work was also financed by a grant from Korea Environmental Industry and Technology Institute (KEITI) funded by the Korean Ministry of Environment (Grant No. 2015000200001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Jik Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, K., Lee, CG., Choi, JW. et al. Application of Thermally Treated Crushed Concrete Granules for the Removal of Phosphate: A Cheap Adsorbent with High Adsorption Capacity. Water Air Soil Pollut 228, 8 (2017). https://doi.org/10.1007/s11270-016-3196-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3196-1

Keywords

Navigation