Skip to main content

Advertisement

Log in

Balancing the Nitrogen Derived from Sewage Effluent and Fertilizers Applied with Drip Irrigation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Balancing the nitrogen derived from sewage effluent and fertilizers is essential for efficiently utilizing the nitrogen and minimizing the environmental degradations when applying sewage effluent. Pot experiments of maize (Zea mays L.) under drip irrigation were performed using 15N labeled urea to quantify the nitrogen balances of sewage effluent and fertilizers. Field experiments were conducted to confirm the findings of pot experiments. Four nitrogen rates ranging from 0 to 2.64 g/pot (0–210 kg/ha equivalently) for pot experiments and from 0 to 180 kg/ha for field experiments were established applying either secondary sewage effluent (SW) or groundwater (GW). Both pot and field experiments revealed that SW irrigation boosted nitrogen uptake and yield of maize compared to GW irrigation. However, the sewage-derived effects decreased with increasing nitrogen rates. SW irrigation could facilitate the uptake of 15N labeled urea relative to GW irrigation. Nonetheless, the nitrogen containing in effluent possibly had lower uptake effectiveness than the fertilizer urea for maize, suggesting greater potential for nitrogen losses resulting from effluent nitrogen compared to urea nitrogen. The percentage utilization of effluent nitrogen declined from 43 to 34% in 2014 and 48 to 32% in 2015 as nitrogen rates increased from 0 to 2.64 g/pot. Besides, the percentages utilization of total nitrogen (including effluent and fertilizers) under SW irrigation increased from 43 to 55% in 2014 and from 48 to 55% in 2015 when the rates increased from 0 to 1.76 g/pot, and subsequently decreased to 48% in 2014 and 44% in 2015 at the rate of 2.64 g/pot. This result was strengthened by the pattern of nitrogen recovery efficiency observed in the field experiments. Overall results of pot and field experiments recommended an optimal rate of 120 kg/ha for maize under drip irrigation applying SW to maximize nitrogen use efficiency and achieve an acceptably high yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adeli, A., Varco, J. J., & Rowe, D. E. (2003). Swine effluent irrigation rate and timing effects on bermudagrass growth, nitrogen and phosphorus utilization, and residual soil nitrogen. Journal of Environmental Quality, 32(2), 681–686.

    Article  CAS  Google Scholar 

  • Adeli, A., Varco, J. J., Sistani, K. R., & Rowe, D. E. (2005). Effects of swine lagoon effluent relative to commercial fertilizer applications on warm-season forage nutritive value. Agronomy Journal, 97(2), 408–417.

    Article  CAS  Google Scholar 

  • Allen, S. C., Jose, S., Nair, P. K. R., Brecke, B. J., & Ramsey, C. L. (2004). Competition for 15N-labeled fertilizer in a pecan (Carya illinoensis K. Koch)-cotton (Gossypium hirsutum L.) alley cropping system in the southern United States. Plant and Soil, 263, 151–164.

    Article  CAS  Google Scholar 

  • Bame, I. B., Hughes, J. C., Titshall, L. W., & Buckley, C. A. (2014). The effect of irrigation with anaerobic baffled reactor effluent on nutrient availability, soil properties and maize growth. Agricultural Water Management, 134, 50–59.

    Article  Google Scholar 

  • Bar-Tal, A. (2011). Major mineral-nitrogen in treated wastewater used for irrigation. In G. Levy, P. Fine, & A. Bar-Tal (Eds.), Use of treated wastewater in agriculture impacts on soil environment and crop (pp. 131–165). UK: Willey.

    Google Scholar 

  • Chen, X. P., Zhang, F. S., Cui, Z. L., Li, F., & Li, J. L. (2010). Optimizing soil nitrogen supply in the root zone to improve maize management. Soil Science Society of America Journal, 74(4), 1367–1373.

    Article  CAS  Google Scholar 

  • Chen, W. P., Lu, S. D., Jiao, W. T., Wang, M. E., & Chang, A. C. (2013). Reclaimed water: a safe irrigation water source? Environment and Development Economics, 8(1), 74–83.

    Article  Google Scholar 

  • Chen, W. P., Lu, S. D., Pan, N., Wang, Y. C., & Wu, L. S. (2015). Impact of reclaimed water irrigation on soil health in urban green areas. Chemosphere, 119, 654–661.

    Article  CAS  Google Scholar 

  • Cliquet, J. B., Deléens, E., Bousser, A., Martin, M., Lescure, J. C., Prioul, J. L., Mariotti, A., & Morot-Gauday, J. F. (1990). Estimation of carbon and nitrogen allocation during stalk elongation by C and N tracing in Zea mays L. Plant Physiology, 92(1), 79–87.

    Article  CAS  Google Scholar 

  • da Fonseca, A. F., Melfi, A. J., & Montes, C. R. (2005). Maize growth and changes in soil fertility after irrigation with treated sewage effluent. I. Plant dry matter yield and soil nitrogen and phosphorus availability. Communications in Soil Science and Plant Analysis, 36, 1965–1981.

    Article  Google Scholar 

  • da Fonseca, A. F., Herpin, U., Paula, A. M., Victória, R. L., & Melfi, A. J. (2007a). Agricultural use of treated sewage effluents: agronomic and environmental implications and perspectives for Brazil. Scientia Agricola, 64(2), 194–209.

    Article  Google Scholar 

  • da Fonseca, A. F., Melfi, A. J., Monteiro, F. A., Montes, C. R., Almeida, V. V., & Herpin, U. (2007b). Treated sewage effluent as a source of water and nitrogen for Tifton 85 bermudagrass. Agricultural Water Management, 87(3), 328–336.

    Article  Google Scholar 

  • Feigin, A., Feigenbaum, S., & Limoni, H. (1981). Utilization efficiency of nitrogen from sewage effluent and fertilizer applied to corn plants growing in a clay soil1. Journal of Environmental Quality, 10(3), 284–287.

    Article  Google Scholar 

  • Feigin, A., Vaisman, I., & Bielorai, H. (1984). Drip irrigation of cotton with treated municipal effluents: II. Nutrient availability in soil1. Journal of Environmental Quality, 13(2), 234–238.

    Article  Google Scholar 

  • Feigin, A., Ravina, I., & Shalhevet, J. (1991). Irrigation with treated sewage effluent: management for environmental protection. Berlin: Springer.

    Book  Google Scholar 

  • Gwenzi, W., & Munondo, R. (2008). Long-term impacts of pasture irrigation with treated sewage effluent on nutrient status of a sandy soil in Zimbabwe. Nutrient Cycling in Agroecosystems, 82(2), 197–207.

    Article  Google Scholar 

  • Hamilton, A. J., Stagnitti, F., Xiong, X. Z., Kreidl, S. L., Benke, K. K., & Maher, P. (2007). Wastewater irrigation: the state of play. Vadose Zone Journal, 6(4), 823–840.

    Article  Google Scholar 

  • Hassanli, A. M., Ahmadirad, S., & Beecham, S. (2010). Evaluation of the influence of irrigation methods and water quality on sugar beet yield and water use efficiency. Agricultural Water Management, 97(2), 357–362.

    Article  Google Scholar 

  • Hussain, G., Al-Jaloud, A. A., & Karimulla, S. (1996). Effect of treated effluent irrigation and nitrogen on yield and nitrogen use efficiency of wheat. Agricultural Water Management, 30(2), 175–184.

    Article  Google Scholar 

  • Khajanchi, L., Minhas, P. S., & Yadav, R. K. (2015). Long-term impact of wastewater irrigation and nutrient rates II. Nutrient balance, nitrate leaching and soil properties under peri-urban cropping systems. Agricultural Water Management, 156, 110–117.

    Article  Google Scholar 

  • Li, J. S., Li, Y. F., & Zhang, H. (2012). Tomato yield and quality and emitter clogging as affected by chlorination schemes of drip irrigation systems applying sewage effluent. Journal of Integrative Agriculture, 11(10), 1744–1754.

    Article  Google Scholar 

  • Li, Y. F., Li, J. S., & Zhang, H. (2014). Effects of chlorination on soil chemical properties and nitrogen uptake for tomato drip irrigated with secondary sewage effluent. Journal of Integrative Agriculture, 13(9), 2049–2060.

    Article  CAS  Google Scholar 

  • Marinho, L. E. D. O., Tonetti, A. L., Stefanutti, R., & Filho, B. C. (2012). Application of reclaimed wastewater in the irrigation of rosebushes. Water, Air, & Soil Pollution, 224(9), 1669–1669.

    Article  Google Scholar 

  • Martínez, S., Suay, R., Moreno, J., & Segura, M. L. (2013). Erratum to: reuse of tertiary municipal wastewater effluent for irrigation of Cucumis melo. Irrigation Science, 31(4), 661–672.

    Article  Google Scholar 

  • Master, Y., Laughlin, R. J., Stevens, R. J., & Shaviv, A. (2004). Nitrite formation and nitrous oxide emissions as affected by reclaimed effluent application. Journal of Environmental Quality, 33(3), 852–860.

    Article  CAS  Google Scholar 

  • Matheyarasu, R., Bolan, N. S., & Naidu, R. (2016). Abattoir wastewater irrigation increases the availability of nutrients and influences on plant growth and development. Water, Air, & Soil Pollution, 227(8), 1–16.

    Article  CAS  Google Scholar 

  • Minhas, P. S., Khajanchi, L., Yadav, R. K., Dubey, S. K., & Chaturvedi, R. K. (2015). Long term impact of waste water irrigation and nutrient rates: I. Performance, sustainability and produce quality of peri urban cropping systems. Agricultural Water Management, 156, 100–109.

    Article  Google Scholar 

  • Monnett, G. T., Reneau, R. B., & Hagedorn, C. (1995). Effects of domestic wastewater spray irrigation on denitrification rates. Journal of Environmental Quality, 24(5), 940–946.

    Article  CAS  Google Scholar 

  • Nogueira, S. F., Pereira, B. F. F., Gomes, T. M., Paula, A. M., Santos, J. A., & Montes, C. R. (2013). Treated sewage effluent: agronomical and economical aspects on bermudagrass production. Agricultural Water Management, 116, 151–159.

    Article  Google Scholar 

  • Segal, E., Dag, A., Ben-Gal, A., Zipori, I., Erel, R., Suryano, S., & Yermiyahu, U. (2011). Olive orchard irrigation with reclaimed wastewater: agronomic and environmental considerations. Agriculture Ecosystems & Environment, 140(3), 454–461.

    Article  Google Scholar 

  • Shang, F. Z., Ren, S. M., Yang, P. L., Li, C. S., & Ma, N. (2015). Effects of different fertilizer and irrigation water types, and dissolved organic matter on soil C and N mineralization in crop rotation farmland. Water, Air, & Soil Pollution, 226(12), 1–25.

    Article  CAS  Google Scholar 

  • Shang, F. Z., Ren, S. M., Yang, P. L., Chi, Y. B., & Xue, Y. D. (2016). Effects of different irrigation water types, N fertilizer types, and soil moisture contents on N2O emissions and N fertilizer transformations in soils. Water, Air, & Soil Pollution, 227(7), 1–18.

    Article  Google Scholar 

  • Shirazi, M. A., & Boersma, L. (1984). A unifying quantitative analysis of soil texture. Soilence Society of America Journal, 48, 142–147.

    Article  Google Scholar 

  • SPSS (2007) SPSS brief guide 16.0. SPSS Inc.

  • Thomsen, I. K. (2004). Nitrogen use efficiency of 15N-labeled poultry manure. Soil Science Society of America Journal, 68(2), 538–544.

    Article  CAS  Google Scholar 

  • Toze, S. (2006). Reuse of effluent water—benefits and risks. Agricultural Water Management, 80, 147–159.

    Article  Google Scholar 

  • WHO, 2006. Guidelines for the safe use of wastewater, excreta and grey water: wastewater use in agriculture, vol. 2. World Health Organization, Geneva, Switzerland.

  • Wienhold, B. J., Trooien, T. P., & Reichman, G. A. (1995). Yield and nitrogen use efficiency of irrigated corn in the northern great plains. Agronomy Journal, 87(5), 842–846.

    Article  CAS  Google Scholar 

  • Yadav, R. K., Goyal, B., Sharma, R. K., Dubey, S. K., & Minhas, P. S. (2002). Post-irrigation impact of domestic sewage effluent on composition of soils, crops and ground water—a case study. Environment International, 28(6), 481–486.

    Article  CAS  Google Scholar 

  • Zhang, Q. W., Yang, Z. L., Zhang, H., & Yi, J. (2012). Recovery efficiency and loss of 15N-labelled urea in a rice–soil system in the upper reaches of the Yellow River basin. Agriculture Ecosystems & Environment, 158, 118–126.

    Article  CAS  Google Scholar 

  • Zou, J. W., Liu, S. W., Qin, Y. M., Pan, G. X., & Zhu, D. W. (2009). Sewage irrigation increased methane and nitrous oxide emissions from rice paddies in southeast China. Agriculture Ecosystems & Environment, 129(4), 516–522.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (grant no. 51339007) and the State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin (grant no. 2014 ZY04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiusheng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Li, J., Li, Y. et al. Balancing the Nitrogen Derived from Sewage Effluent and Fertilizers Applied with Drip Irrigation. Water Air Soil Pollut 228, 12 (2017). https://doi.org/10.1007/s11270-016-3192-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3192-5

Keywords

Navigation