Skip to main content
Log in

The Removal of Arsenic and Uranium from Aqueous Solutions by Sorption onto Iron Oxide-Coated Zeolite (IOCZ)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, an iron oxide-coated zeolite (IOCZ) nanocomposite was synthesized and used for the removal of U(VI) and As(III) from aqueous solutions using a batch system. Parameters such as various contact times, pH, competing ions (Cd2+, Co2+, and Cr3+), temperature, and initial concentrations of uranium(VI) and arsenic(III) were investigated. The experimental results were fitted to the Langmuir, Freundlich, and Dubinin–Radushkevich isotherms to obtain the characteristic parameters of each model. Results suggested that adsorption of U(VI) and As(III) by IOCZ was best modeled with the Freundlich isotherm. The kinetic experimental data fitted the pseudo second-order model better than the pseudo first-order model for both elements. Using the thermodynamic equilibrium constants obtained at different temperatures, various thermodynamic parameters, such as ΔG o, ΔH o, and ΔS o, were calculated. These parameters indicated that the process is spontaneous and exothermic in nature. It was noted that an increase in temperature resulted in a decrease of 8.5 and 27.5% for U and As removal, respectively. An increase in initial concentrations of U(VI) and As(III) from 10 to 100 mg L−1 at pH 3 resulted in increased adsorption capacities (q e ) for both elements. The increases were from 1.247 to 20.10 mg g−1 for U(VI) and from 3.115 to 54.18 mg g−1 for As(V). The presence of competing ions such as Cd2+, Co2+, and Cr3+ enhanced the removal of As by 9.2% whereas the adsorption capacity of uranium decreased by 13.8%. This research demonstrated that IOCZ is a potential adsorbent for the removal of U(VI) and As(III) from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry (ATSDR). (2000). Toxicological profile for arsenic TP-92/09. Georgia: Center for Disease Control, Atlanta.

    Google Scholar 

  • Aksu, Z. (2002). Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of lead(II) ions onto Chlorella vulgaris. Process Biochemistry, 38, 89–99.

    Article  CAS  Google Scholar 

  • Badruzzaman, M., Westerhoff, P., & Knappe, D. (2004). Intraparticle diffusion and adsorption of arsenate onto granular ferric hydroxide (GFH). Water Research, 38(18), 4002–4012.

    Article  CAS  Google Scholar 

  • Bakatula, E.N. (2012). Development of a biophysical system based on bentonite, zeolite and micro-organisms for remediating gold mine wastewaters and tailings ponds. Thesis, University of the Witwatersrand, 7–12.

  • Bakatula, E. N., Cukrowska, E. M., Weiersbye, I. M., Mihaly-Cozmuta, L., Peter, A., & Tutu, H. (2014). Biosorption of trace elements from aqueous systems in gold mining sites by the filamentous green algae (Oedogonium sp.). Journal of Geochemical Exploration. doi:10.1016/j.gexplo.2014.02.017.

    Google Scholar 

  • Bakatula, E. N., Mosai, A. K., & Tutu, H. (2015). Removal of uranium from aqueous solutions using ammonium-modified zeolite. South African Journal of Chemistry, 68, 165–171.

    Article  CAS  Google Scholar 

  • Centeno, J.A., Tchounwou, P.B., Patlolla, A.K, Mullick, F.G., Murakat, L., & al. (2005). Environmental pathology and health effects of arsenic poisoning: a critical review. In: Naidu R, Smith E, Smith J, Bhattacharya P, (eds.) Managing arsenic in the environment: from soil to human health. Adelaide.

  • Dada, A. O., Olalekan, A. P., & Olatunya, A. M. (2012). Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. Journal of Applied Chemistry, 3(1), 38–45.

    Google Scholar 

  • Department of water affairs and forestry (DWAF). https://www.dwaf.gov.za/iwqs/wq_guide/domestic.pdf Accessed on 19 May, 2015.

  • Feather, C. E., & Koen, G. M. (1975). The mineralogy of the Witwatersrand reefs. Minerals Science and Engineering, 7, 189–224.

    CAS  Google Scholar 

  • Ferguson, J. F., & Gavis, J. (1972). A review of the arsenic cycle in natural waters. Water Research, 6, 1259–1274.

    Article  CAS  Google Scholar 

  • Fierro, V., Muiz, G., Gonzalez-Sánchez, G., Ballinas, M., & Celzard, A. (2009). Arsenic removal by iron-doped activated carbons prepared by ferric chloride forced hydrolysis. Journal of Hazardous Materials, 168(1), 430–437.

    Article  CAS  Google Scholar 

  • Freundlich, H. M. F. (1906). Over the adsorption in solution. The Journal of Physical Chemistry, 57, 385–470.

    CAS  Google Scholar 

  • Fungaro, D. A., Yamaura, M., & Craesmeyer, G. R. (2012). Uranium removal from aqueous solution by zeolite from fly ash-iron oxide magnetic nanocomposite. International Review of Chemical Engineering, 4(3), 353–358.

    Google Scholar 

  • Gillman, G. P., & Sumpter, E. A. (1986). Modification to the compulsive exchange method for measuring exchange characteristics of soils. Australian Journal of Soil Research, 24, 61–66.

    Article  CAS  Google Scholar 

  • Gu, Z., & Deng, B. (2007). Use of iron-containing mesoporous carbon (IMC) for arsenic removal from drinking water. Environmental Engineering Science, 24(1), 113–121.

    Article  CAS  Google Scholar 

  • Guo, X., & Chen, F. (2005). Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal. Environmental Science and Technology, 39, 6808.

    Article  CAS  Google Scholar 

  • Hakonson-Hayes, A. C., Fresquez, P. R., & Whicker, F. W. (2002). Assessing potential risks from exposure to natural uranium in well water. Journal of Environmental Radioactivity, 59, 29–40.

    Article  CAS  Google Scholar 

  • Ho, Y. S., Wase, D. A. J., & Forester, C. F. (1999). Kinetic studies of competitive heavy metal adsorption by sphagnum peat. Environmental Technology, 17, 441–443.

    Google Scholar 

  • Hsu, J. C., Lin, C. J., Liao, C. H., & Chen, S. T. (2008). Removal of As(V) and As(III) by reclaimed iron-oxide coated sands. Journal of Hazardous Materials, 153, 817–826.

    Article  CAS  Google Scholar 

  • Jeon, C. S., Baek, K., Park, J. K., Oh, Y. K., & Lee, S. D. (2009). Adsorption characteristics of As(V) on iron-coated zeolite. Journal of Hazardous Materials, 163, 804–808.

    Article  CAS  Google Scholar 

  • Kesunathan, G., M. Tumelo, M., & Moodley, K.G. (2006). Paper for the COST Action 37 Workshop, Berlin.

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1403.

    Article  CAS  Google Scholar 

  • Lumsdon, D. G., Fraser, A. R., Russell, J. D., & Livesey, N. T. (1984). New infrared band assignments for the arsenate ion adsorbed on synthetic goethite (a-FeOOH). Journal of Soil Science, 35, 381–386.

    Article  CAS  Google Scholar 

  • Mahmood, T., Saddique, M. T., Naeem, A., Westerhoff, P., Mustafa, S., et al. (2011). Comparison of different methods for the point of zero charge determination of NiO. Industrial & Engineering Chemistry Research, 50, 10017–10023.

    Article  CAS  Google Scholar 

  • McCarthy, T.S., & and Pretorius, K. (2009). Coal mining on the Highveld and its future water quality in the Vaal river system. International Mine Water Association, ISBN Number: 978-0-9802623-5-3.

  • Mondal, P., Mohanty, B., Majumder, C., & Bhandari, N. (2009). Removal of arsenic from simulated groundwater by GAC-Fe: a modeling approach. AICHE Journal, 55(7), 1860–1871.

    Article  CAS  Google Scholar 

  • National Research Council. Arsenic in drinking water. (2001) Update. On line http://www.nap.edu/books/0309076293/html/.

  • Osborne, S. H., & Ehrlich, H. L. (1976). Oxidation of arsenite by a soil isolate of Alcaligenes. Journal of Applied Bacteriology, 41, 295–305.

    Article  CAS  Google Scholar 

  • Özer, A., Ekiz, I. H., Özer, D., Kutsul, T., & Caglar, A. (1997). A comparative study of the biosorption of cadmium(II) ions to S. leibleinil and R. arrhizis. Chimica Acta Turica, 25(1), 63–67.

    Google Scholar 

  • Puigdomenech, I. (1999). MEDUSA: make equilibrium diagrams using sophisticated algorithms, version 2. Inorganic Chemistry. Stockholm7 Royal Institute of Technology (KTH). http://www.inorg.kth.se.

  • Reimold, W. U., & Gibson, R.J. (2006). Processes on the early earth, geological society of America, pp 354.

  • Robb, L. J., & Robb, V. M. (1998). Gold in the Witwatersrand basin. In M. G. C. Wilson & C. R. Maske (Eds.), The mineral resources of South Africa (6th ed., pp. 294–349). Pretoria: Council of Geoscience.

    Google Scholar 

  • Sami, K. & Druzynski, A.L. (2003). Final report to the water research commission for the project “mapping of naturally occurring hazardous trace constituents in groundwater”. WRC Report No. 1236/1/03, South Africa.

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568.

    Article  CAS  Google Scholar 

  • Smedley, P.L. & Kinniburgh, D.G. (2003). Source and behaviour of arsenic in natural waters, chapter 1, Arsenic report, WHO, pp 60, British Geological Survey, Wallingford, Oxon OX10 8BB, U.K.

  • Sun, X., & Doner, H. E. (1996). An investigation of arsenate and arsenite bonding structures on goethite by FTIR. Soil Science, 161, 865–872.

    Article  CAS  Google Scholar 

  • Taffarel, R. S., & Rubio, J. (2010). Removal of Mn2+ from aqueous solution by manganese oxide coated zeolite. Minerals Engineering, 23, 1131–1138.

    Article  CAS  Google Scholar 

  • Tan, W. F., Lu, S. J., Liu, F., Feng, X. H., He, J. Z., & Koopal, L. K. (2008). Determination of the point of zero charge of manganese oxides with different methods including an improved salt titration method. Soil Science, 173, 277.

    Article  CAS  Google Scholar 

  • Tchounwou, P. B., Patlolla, A. K., & Centeno, J. A. (2003). Carcinogenic and systemic health effects associated with arsenic exposure—a critical review. Journal of Toxicologic Pathology, 31, 575–588.

    CAS  Google Scholar 

  • Tchounwou, P. B., Centeno, J. A., & Patlolla, A. K. (2004). Arsenic toxicity, mutagenesis and carcinogenesis—a health risk assessment and management approach. Molecular and Cellular Biochemistry, 255, 47–55.

    Article  CAS  Google Scholar 

  • Thirunavukkarasu, O., Viraraghavan, T., Subramanian, K., & Tanjore, S. (2002). Organic arsenic removal from drinking water. Urban Water, 4(4), 415–421.

    Article  CAS  Google Scholar 

  • Thirunavukkarasu, O. S., Viraraghavant, T., & Subramanian, K. S. (2003). Arsenic removal from drinking water using iron oxide-coated sand. Water, Air, and Soil Pollution, 142, 95–111.

    Article  CAS  Google Scholar 

  • Tutu, H. (2006). Determination and geochemical modeling of the dispersal of uranium in gold-mine polluted land on the Witwatersrand. PhD Thesis, University Witwatersrand, Johannesburg.

  • Tutu, H., McCarthy, T. S., & Cukrowska, E. M. (2008). The chemical characteristics of acid mine drainage with particular reference to sources, distribution and remediation: the Witwatersrand Basin, South Africa, as a case study. Applied Geochemistry, 23, 3666–3684.

    Article  CAS  Google Scholar 

  • Tutu, H., McCarthy, T. S., Cukrowska, E. M., Hart, R., & Chimuka, L. (2009). Radioactive disequilibrium and geochemical modelling as evidence of uranium leaching from gold tailings dumps in the Witwatersrand Basin. International Journal of Environmental Analytical Chemistry, 89(8–12), 687–703.

    Article  CAS  Google Scholar 

  • Unlu, N., & Ersoz, M. (2007). Removal of heavy metal ions by using dithiocarbamated-sporopollenin. Separation and Purification Technology, 52, 461.

    Article  Google Scholar 

  • Wang, J., & Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnology Advances, 24(5), 427–451.

    Article  CAS  Google Scholar 

  • Wang, J., Li, X., Scott, J. I., Yue, Z., & Economy, J. (2010). Iron oxide-coated on glass fibers for arsenic removal. Separation Science and Technology, 45(8), 1058–1065.

    Article  CAS  Google Scholar 

  • Waychunas, G. A., Rea, B. A., Fuller, C. C., & Davis, J. A. (1993). Surface chemistry of ferrihydrite. 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochimica et Cosmochimica Acta, 57(15), 2251–2269.

    Article  CAS  Google Scholar 

  • Winde, F. (2002). Uranium contamination in fluvial systems—mechanisms and processes. Part I: geochemical mobility of uranium along the water path—the Koekemoerspruit (South Africa) as a case study. Cuardernos de Investigacion Geografica, 28, 49–57. ISSN 0211–6820.

    Article  Google Scholar 

  • Winde, F. (2010). U pollution in the Wonderfonteinspruit: 1997–2008 part I: U-toxicity, regional background and mining-related sources of U-pollution. Water SA, 36(3), 239–256.

    CAS  Google Scholar 

  • Winde, F. & Sandham, L.A. (2004). Uranium pollution of South African streams—an overview of the situation in gold mining areas of the Witwatersrand. Sustainable Water Management in Africa-Chances and Barriers. Supplement volume, GeoJournal, 61, 131–149.

  • World Health Organization (WHO) (2005). Uranium in drinking water: background document for development of WHO guidelines for drinking water quality (WHO/SDE/WSH/03.04/118). World Health Organization, 26 pp.

  • Yean, S., Cong, L., Yavuz, C. T., Mayo, J. T., Yu, W. W., et al. (2005). Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. Journal of Materials Research, 20(12), 3255–3264.

    Article  CAS  Google Scholar 

  • Yuan, T., Hu, J. Y., Ong, S. L., Luo, Q. F., & Ng, W. J. (2002). Arsenic removal from household drinking water by adsorption. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, 37(9), 1721–1736.

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to the University Research Committee (URC) Postdoc Fellowship and the National Research Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Bakatula.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakatula, E.N., Molaudzi, R., Nekhunguni, P. et al. The Removal of Arsenic and Uranium from Aqueous Solutions by Sorption onto Iron Oxide-Coated Zeolite (IOCZ). Water Air Soil Pollut 228, 5 (2017). https://doi.org/10.1007/s11270-016-3190-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3190-7

Keywords

Navigation