Skip to main content
Log in

Synthesis, Characterization and Application of ZrCl4-Graphene Composite Supported on Activated Carbon for Efficient Removal of Fluoride to Obtain Drinking Water

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The aim of this study is to evaluate the fluoride removal from contaminated water using a new adsorbent material of high efficiency to obtain drinking water. The ZrCl4-graphene supported on vegetal activated carbon composite (G-ZrCl4/VAC) was synthesized and characterized using transmission and scanning electron microscopy, N2 physisorption, energy dispersive X-ray spectrometry, Fourier transform-infrared spectroscopy, X-ray diffraction, and Raman spectroscopy. Furthermore, the point of zero charge was determined. The G-ZrCl4/VAC was evaluated for fluoride adsorptive removal from water under several operating conditions in batch system. The results indicated that fluoride adsorption by G-ZrCl4/VAC is favored at low pH values with the maximum adsorption at pH 2, corresponding to 97.22% removal. Among the conditions of temperature and agitation evaluated, the best results were achieved at 30 °C and 130 rpm, with removal percentages equal to 47.78 and 48.48%, respectively. The equilibrium of the system was achieved in 5 h of operation. The pseudo-first order kinetic model was the one that best described the kinetic data, while the equilibrium data were best described by the Langmuir isotherm with maximum adsorption capacity equal to 3.89 mg g−1. Therefore, the results obtained show that the material synthesized has a great capacity for adsorption and demonstrate the viability of use of G-ZrCl4/VAC in the removal of fluoride to obtain drinking water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agrawal, R., Margandan, K., Acharya, R., Sharma, S., & Qanungo, K. (2014). Fabrication and testing of activated alumina based defluoridation filters with yarn cartridges. International Journal of ChemTech Research, 6(1), 845–859.

    Google Scholar 

  • Ahmad, A. F., Moin, F. H. A., Mohd, H. M. K., Rahman, I. A., Mohamed, F., Hua, C. C., Ramli, S., & Radiman, S. (2013). Graphene colloidal dispersion in various organic solvents. Malaysian Journal of Analytical Sciences, 17(3), 475–480.

    Google Scholar 

  • Alagumuthu, G., & Rajan, M. (2010). Kinetic and equilibrium studies on fluoride removal by zirconium (iv)-impregnated groundnut shell carbon. Hemijska Industrija. doi:10.2298/hemind100307017a.

    Google Scholar 

  • Alagumuthu, G., Veeraputhiran, V., & Venkataraman, R. (2011). Fluoride sorption using cynodon dactylon-based activated carbon. Hemijska Industrija. doi:10.2298/hemind100712052a.

    Google Scholar 

  • Ali, S., Thakur, S. K., Sarkar, A., & Shekhar, S. (2016). Worldwide contamination of water by fluoride. Environmental Chemistry Letters. doi:10.1007/s10311-016-0563-5.

    Google Scholar 

  • APHA/AWWA/WEF - American Public Health Association, American Water Works Association, Water Environment Federation. (2012). Standard methods for the examination of water and wastewater (22nd Ed.). Washington: American Public Health Association.

  • Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen. Isotherms. Journal of the American Chemical Society. doi:10.1021/ja01145a126.

    Google Scholar 

  • Bhaumik, R., & Mondal, N. K. (2016). Optimizing adsorption of fluoride from water by modified banana peel dust using response surface modelling approach. Applied Water Science. doi:10.1007/s13201-014-0211-9.

    Google Scholar 

  • Blackwell, J. A., & Carr, P. W. (1991). Study of the fluoride adsorption characteristics of porous microparticulate zirconium oxide. Journal of Chromatography A. doi:10.1016/S0021-9673(00)91417-1.

    Google Scholar 

  • Brasil. (2011). Ministério da Saúde. Portaria n° 2.914, de 12 de dezembro de 2011. Biblioteca Virtual em Saúde. http://bvsms.saude.gov.br/bvs/saudelegis/gm/2011/prt2914_12_12_2011.html. Accessed 15 may 2013.

  • Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society. doi:10.1021/ja01269a023.

    Google Scholar 

  • Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a theory of Van der Waals adsorption of gases. Journal of the American Chemical Society. doi:10.1021/ja01864a025.

    Google Scholar 

  • CDC - Centers for Disease Control and Prevention. (2006). Fluoride in drinking water: a scientific review of EPA’s standards. Washington: The National Academies Press.

    Google Scholar 

  • Chanda, D., Hnát, J., Dobrota, A. S., Pašti, I. A., Paidar, M., & Bouzek, B. (2015). The effect of surface modification by reduced graphene oxide on the electrocatalytic activity of nickel towards the hydrogen evolution reaction. Physical Chemistry Chemical Physics. doi:10.1039/c5cp04238k.

    Google Scholar 

  • Chandra, V., Park, J., Chun, Y., Lee, J. W., Hwang, I.-C., & Kim, K. S. (2010). Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano. doi:10.1021/nn1008897.

    Google Scholar 

  • Chen, N., Zhang, Z., Feng, C., Sugiura, N., Li, M., & Chen, R. (2010). Fluoride removal from water by granular ceramic adsorption. Journal of Colloid and Interface Science. doi:10.1016/j.jcis.2010.04.048.

    Google Scholar 

  • D’Alessandro, W., Bellomo, S., & Parello, F. (2012). Fluorine adsorption by volcanic soils at Mt. Etna, Italy. Applied Geochemistry. doi:10.1016/j.apgeochem.2012.02.028.

    Google Scholar 

  • Davila-Rodriguez, J. L., Escobar-Barrios, V. A., Shirai, K., & Rangel-Mendez, J. R. (2009). Synthesis of a chitin-based biocomposite for water treatment: optimization for fluoride removal. Journal of Fluorine Chemistry. doi:10.1016/j.jfluchem.2009.05.012.

    Google Scholar 

  • Djomgoue, P., & Njopwouo, D. (2013). FT-IR spectroscopy applied for surface clays characterization. Journal of Surface Engineered Materials and Advanced Technology. doi:10.4236/jsemat.2013.34037.

    Google Scholar 

  • Ferrari, A. C. (2007). Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Communications. doi:10.1016/j.ssc.2007.03.052.

    Google Scholar 

  • Ferrari, A. C., & Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B. doi:10.1103/PhysRevB.61.14095.

    Google Scholar 

  • Finar, I. L. (1985). Organic chemistry: the fundamental principles (6ªth ed.). England: ELBS/Longman.

    Google Scholar 

  • Ganguly, A., Sharma, S., Papakonstantinou, P., & Hamilton, J. (2011). Probing the thermal deoxygenation of graphene oxide using high-resolution in situ x-ray-based spectroscopies. The Journal of Physical Chemistry C. doi:10.1021/jp203741y.

    Google Scholar 

  • Ganvir, V., & Das, K. (2011). Removal of fluoride from drinking water using aluminum hydroxide coated ricehusk ash. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2010.10.044.

    Google Scholar 

  • Geankoplis, C. J. (1993). Transport processes and unit operations (3ªth ed.). Englewood Cliffs: Prentice-Hall International.

    Google Scholar 

  • Gogoi, P. K., & Baruah, R. (2008). Fluoride removal from water by adsorption on acid activated kaolinite clay. Indian Journal of Chemical Technology, 15(5), 500–503.

    CAS  Google Scholar 

  • Goldstein, J. I., Newbury, D. E., Echlin, P., Joy, D. C., Lyman, C. E., Romig, A. D., Fiori, C. E., & Lifshin, E. (1992). Scanning electron microscopy and x-ray microanalysis (3ªth ed.). New York: Plenum.

    Book  Google Scholar 

  • Gu, W., Zhang, W., Li, X., Zhu, H., Wei, J., Li, Z., Shu, Q., Wang, C., Wang, K., Shen, W., Kang, F., & Wu, D. (2009). Graphene sheets from worm-like exfoliated graphite. Journal of Materials Chemistry. doi:10.1039/b904093p.

    Google Scholar 

  • Guerra, D. L., Airoldi, C., Lemos, V. P., Angélica, R. S., & Viana, R. R. (2007). Aplication of al-pilc in the adsorption of Cu2+, Ni2+e CO2+ using adsorption physico-chemical models. Ecletica Quimica. doi:10.1590/S0100-46702007000300008.

    Google Scholar 

  • Guo, B., Hong, L., & Jiang, H. X. (2003). Macroporous poly(calcium acrylate-divinylbenzene) bead—a selective orthophosphate sorbent. Industrial & Engineering Chemistry Research. doi:10.1021/ie030156i.

    Google Scholar 

  • Health Canada. (2016). Guidelines for Canadian drinking water quality. Guideline technical document—fluoride. http://healthycanadians.gc.ca/publications/healthy-living-vie-saine/water-fluoride-fluorure-eau/index-eng.php?page=2#part1. Accessed 03 march 2016.

  • Ho, Y. S., & Mckay, G. (1998). A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Safety and Environmental Protection. doi:10.1205/095758298529696.

    Google Scholar 

  • IUPAC. (1976). Manual of symbols and terminology for physicochemical quantities and units—appendix II. Pure and Applied Chemistry, 46(1), 71–90.

    Google Scholar 

  • Jana, S., & Biswas, P. K. (1997). Chemical behaviour of zirconium oxychloride octahydrate and acetic acid in precursor solution for zirconia film formation on glass. Journal of Sol-Gel Science and Technology. doi:10.1007/bf02437186.

    Google Scholar 

  • Karthikeyan, M., & Elango, K. P. (2009). Removal of fluoride from water using aluminium containing compounds. Journal of Environmental Sciences. doi:10.1016/S1001-0742(08)62448-1.

    Google Scholar 

  • King, P., Rakesh, N., Beenalahari, S., Kumar, Y. P., & Prasad, V. S. R. K. (2007). Prasad removal of lead from aqueous solution using syzygium cumini L.: equilibrium and kinetic studies. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2006.08.027.

    Google Scholar 

  • Kumar, A. S. K., Jiang, S.-J., & Tseng, W.-L. (2016). Facile synthesis and characterization of thiol-functionalized graphene oxide as effective adsorbent for Hg(II). Journal of Environmental Chemical Engineering. doi:10.1016/j.jece.2016.03.034.

    Google Scholar 

  • Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar, 24(4), 1–39.

    Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society. doi:10.1021/ja02242a004.

    Google Scholar 

  • Li, Y., Zhang, P., Du, Q., Peng, X., Liu, T., Wang, Z., Xia, Y., Zhang, W., Wang, K., Zhu, H., & Wu, D. (2011). Adsorption of fluoride from aqueous solution by graphene. Journal of Colloid and Interface Science. doi:10.1016/j.jcis.2011.07.032.

    Google Scholar 

  • Li, M., Wang, J., Jiao, C., Wang, C., Wu, Q., & Wang, Z. (2016). Graphene oxide framework: an adsorbent for solid phase extraction of phenylurea herbicides from water and celery samples. Journal of Chromatography A. doi:10.1016/j.chroma.2016.09.056.

    Google Scholar 

  • Lu, A.-H., Salabas, E. L., & Schüth, F. (2007). Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition. doi:10.1002/anie.200602866.

    Google Scholar 

  • Malakootian, M., Fatehizadeh, A., Yousefi, N., Ahmadian, M., & Moosazadeh, M. (2011). Fluoride removal using regenerated spent bleaching earth (RSBE) from groundwater: case study on Kuhbonan water. Desalination. doi:10.1016/j.desal.2011.04.033.

    Google Scholar 

  • Mariappan, R., Vairamuthu, R., & Ganapathy, A. (2015). Use of chemically activated cotton nut shell carbon for the removal of fluoride contaminated drinking water: kinetics evaluation. Chinese Journal of Chemical Engineering. doi:10.1016/j.cjche.2014.05.019.

    Google Scholar 

  • Meenakshi, S., & Viswanathan, N. (2007). Identification of selective ion-exchange resin for fluoride sorption. Journal of Colloid and Interface Science. doi:10.1016/j.jcis.2006.12.032.

    Google Scholar 

  • Mondal, N. K., Bhaumik, R., & Datta, J. K. (2015). Removal of fluoride by aluminum impregnated coconut fiber from synthetic fluoride solution and natural water. Alexandria Engineering Journal. doi:10.1016/j.aej.2015.08.006.

    Google Scholar 

  • Nagatani, T., Saito, S., Sato, M., & Yamada, M. (1987). Development of an ultra-high resolution scanning electron microscope by means of a field emission source and in-lens system. Scanning Microscopy, 11(3), 901–909.

    Google Scholar 

  • Ni, Z., Wang, Y., Yu, T., & Shen, Z. (2008). Raman spectroscopy and imaging of graphene. Nano Research. doi:10.1007/s12274-008-8036-1.

    Google Scholar 

  • Nine, M. J., Cole, M. A., Tran, D. N. H., & Losic, D. (2015). Graphene: a multipurpose material for protective coatings. Journal of Materials Chemistry A. doi:10.1039/c5ta01010a.

    Google Scholar 

  • Noh, J. S., & Schwarz, J. A. (1989). Estimation of the point of zero charge of simple oxides by mass titration. Journal of Colloid and Interface Science. doi:10.1016/0021-9797(89)90086-6.

    Google Scholar 

  • Nur, T., Loganathan, P., Nguyen, T. C., Vigneswaran, S., Singh, G., & Kandasamy, J. (2014). Batch and column adsorption and desorption of fluoride using hydrous ferric oxide: solution chemistry and modeling. Chemical Engineering Journal. doi:10.1016/j.cej.2014.03.009.

    Google Scholar 

  • Paudyal, H., Pangeni, B., Inoue, K., Kawakita, H., Ohto, K., Harada, H., & Alam, S. (2011). Adsorptive removal of fluoride from aqueous solution using orange waste loaded with multi-valent metal íons. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2011.05.070.

    Google Scholar 

  • Paudyal, H., Pangeni, B., Ghimire, K. N., Inoue, K., Ohto, K., Kawakita, H., & Alam, S. (2012a). Adsorption behavior of orange waste gel for some rare earth ions and its application to the removal of fluoride from water. Chemical Engineering Journal. doi:10.1016/j.cej.2012.04.061.

    Google Scholar 

  • Paudyal, H., Pangeni, B., Inoue, K., Kawakita, H., Ohto, K., & Alam, S. (2012b). Removal of fluoride from aqueous solution by using porous resins containing hydrated oxide of cerium(IV) and zirconium(IV). Journal of Chemical Engineering of Japan. doi:10.1252/jcej.11we181.

    Google Scholar 

  • Poursaberi, T., Hassanisadi, M., Torkestani, K., & Zare, M. (2012). Development of zirconium (IV)-metalloporphyrin grafted Fe3O4 nanoparticles for efficient fluoride removal. Chemical Engineering Journal. doi:10.1016/j.cej.2012.02.039.

    Google Scholar 

  • Rafique, A., Awan, M. A., Wasti, A., Qazi, I. A., & Arshad, M. (2013). Removal of fluoride from drinking water using modified immobilized activated alumina. Journal of Chemistry. doi:10.1155/2013/386476.

    Google Scholar 

  • Saito, R., Furukawa, M., Dresselhaus, G., & Dresselhaus, M. S. (2010). Raman spectra of graphene ribbons. Journal of Physics: Condensed Matter. doi:10.1088/0953-8984/22/33/334203.

    Google Scholar 

  • Sepehr, M. N., Sivasankar, V., Zarrabi, M., & Kumar, M. S. (2013). Surface modification of pumice enhancing its fluoride adsorption capacity: an insight into kinetic and thermodynamic studies. Chemical Engineering Journal. doi:10.1016/j.cej.2013.04.089.

    Google Scholar 

  • Shalaby, A., Nihtianova, D., Markov, P., Staneva, A. D., Iordanova, R. S., & Dimitriev, Y. B. (2015). Structural analysis of reduced graphene oxide by transmission electron microscopy. Bulgarian Chemical Communications, 47(1), 291–295.

    Google Scholar 

  • Sheng, Y., Tang, X., Peng, E., & Xue, J. (2013). Graphene oxide based fluorescent nanocomposites for cellular imaging. Journal of Materials Chemistry B. doi:10.1039/c2tb00123c.

    Google Scholar 

  • Shimanouchi, T. (1977). Tables of molecular vibrational frequencies. Consolidated volume II. Journal of Physical and Chemical Reference Data. doi:10.1063/1.555560.

    Google Scholar 

  • Srinivas, G., Zhu, Y., Piner, R., Skipper, N., Ellerby, M., & Ruoff, R. (2010). Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity. Carbon. doi:10.1016/j.carbon.2009.10.003.

    Google Scholar 

  • Swain, S. K., Mishra, S., Patnaik, T., Patel, R. K., Jha, U., & Dey, R. K. (2012). Fluoride removal performance of a new hybrid sorbent of Zr(IV)–ethylenediamine. Chemical Engineering Journal. doi:10.1016/j.cej.2011.12.091.

    Google Scholar 

  • Tomar, V., Prasad, S., & Kumar, D. (2014). Adsorptive removal of fluoride from aqueous media using Citrus limonum (lemon) leaf. Microchemical Journal. doi:10.1016/j.microc.2013.09.010.

    Google Scholar 

  • Tovar-Gómez, R., Moreno-Virgen, M. R., Dena-Aguilar, J. A., Hernández-Montoya, V., Bonilla-Petriciolet, A., & Montes-Morán, M. A. (2013). Modeling of fixed-bed adsorption of fluoride on bone char using a hybrid neural network approach. Chemical Engineering Journal. doi:10.1016/j.cej.2013.05.080.

    Google Scholar 

  • Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89(2), 31–60.

    Google Scholar 

  • World Health Organization. (2011). Guidelines for drinking-water quality (4th Ed.). Geneva: World Health Organization.

  • Xiong, P., Hu, C., Fan, Y., Zhang, W., Zhu, J., & Wang, X. (2014). Ternary manganese ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance performance. Journal of Power Sources. doi:10.1016/j.jpowsour.2014.05.048.

    Google Scholar 

  • Yadav, A. K., Abbassi, R., Gupta, A., & Dadashzadeh, M. (2013). Removal of fluoride from aqueous solution and groundwater by wheat straw, sawdust and activated bagasse carbon of sugarcane. Ecological Engineering. doi:10.1016/j.ecoleng.2012.12.069.

    Google Scholar 

  • Yamaguchi, N. U., Bergamasco, R., & Hamoudi, S. (2016). Magnetic MnFe2O4-graphene hybrid composite for efficient removal of glyphosate from water. Chemical Engineering Journal. doi:10.1016/j.cej.2016.03.051.

    Google Scholar 

  • Yang, D., Velamakanni, A., Bozoklu, G., Park, S., Stoller, M., Piner, R. D., Stankovich, S., Jung, I., Field, D. A., Ventrice, C. A., Jr., & Ruoff, R. S. (2009). Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon. doi:10.1016/j.carbon.2008.09.045.

    Google Scholar 

  • Zhang, L. Y., Zhang, W., Zhou, Z., & Li, C. M. (2016). γ-Fe2O3 nanocrystals-anchored macro/meso-porous graphene as a highly efficient adsorbent toward removal of methylene blue. Journal of Colloid and Interface Science. doi:10.1016/j.jcis.2016.05.025.

    Google Scholar 

  • Zhou, M., Tian, T., Li, X., Sun, X., Zhang, J., Cui, P., Tang, J., & Qin, L. C. (2014). Production of graphene by liquid-phase exfoliation of intercalated graphite. International Journal of Electrochemical Science, 9(2), 810–820.

    Google Scholar 

  • Zhu, J., Wei, S., Gu, H., Rapole, S. B., Wang, Q., Luo, Z., Haldolaarachchige, N., Young, D. P., & Guo, Z. (2012). One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal. Environmental Science & Technology. doi:10.1021/es2014133.

    Google Scholar 

  • Zhu, J., Lin, X., Wu, P., Zhou, Q., & Luo, X. (2015). Fluoride removal from aqueous solution by Al(III)–Zr(IV) binary oxide adsorbent. Applied Surface Science. doi:10.1016/j.apsusc.2015.09.012.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Council for Scientific and Technological Development (CNPq - Brazil), the Natural Sciences and Engineering Research Council of Canada (NSERC), and Canada Foundation for Innovation (CFI) for financial support. They also are grateful to Richard Janvier for TEM characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosângela Bergamasco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marin, P., Módenes, A.N., Bergamasco, R. et al. Synthesis, Characterization and Application of ZrCl4-Graphene Composite Supported on Activated Carbon for Efficient Removal of Fluoride to Obtain Drinking Water. Water Air Soil Pollut 227, 479 (2016). https://doi.org/10.1007/s11270-016-3188-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3188-1

Keywords

Navigation