Skip to main content
Log in

Methylene Blue Adsorption on Chitosan-g-Poly(Acrylic Acid)/Rice Husk Ash Superabsorbent Composite: Kinetics, Equilibrium, and Thermodynamics

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A set of chitosan-g-poly(acrylic acid)/rice husk ash hydrogel composites was successfully employed as methylene blue (MB) adsorbent. Maximum MB adsorption capacity of 1952 mg/g of dried hydrogel was obtained with the composite at 5 wt% of rice husk ash (RHA) at pH ≥ 5. The adsorption capacity varied from 1450 to 1950 mg/g with increasing the initial MB concentration from 1500 to 2500 mg/L. The MB removal efficiency was higher than 90% for all samples. At pH ≥ 5, negatively charged groups (–COO) in the adsorbent were generated, which could strongly interact with the positive charges from MB, favoring adsorption. Adsorption kinetics followed the pseudo-second-order model, which is based on the chemisorption phenomenon, reaching saturation as fast as 1 h of experiments due to the formation of an adsorbed MB monolayer, as suggested by the Langmuir isotherm model (type I). Desorption experiments showed that 75% of loaded MB can be removed from the adsorbent by immersing it in a pH 1 solution. CHT-g-PAAc/RHA5% composite was submitted to five cycles of adsorption/desorption, maintaining its MB removal efficiency at 91%. Therefore, chitosan-g-poly(acrylic acid)/RHA hydrogel composites present outstanding capacity to be employed in the remediation of MB-contaminated wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmaruzzaman, M., & Gupta, V. K. (2011). Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Industrial & Engineering Chemistry Research, 50, 13589–13613.

    Article  CAS  Google Scholar 

  • Aprea, P., de Gennaro, B., Gargiulo, N., Peluso, A., Liguori, B., Iucolano, F., & Caputo, D. (2016). Sr-, Zn- and Cd-exchanged zeolitic materials as water vapor adsorbents for thermal energy storage applications. Applied Thermal Engineering, 106, 1217–1224.

    Article  CAS  Google Scholar 

  • Ash, S. R. (2001). Powdered sorbent liver dialysis and pheresis in treatment of hepatic failure. Therapeutic Apheresis, 5, 404–416.

    Article  CAS  Google Scholar 

  • Bajpai, S. K., Navin, C. & Manika, M. (2012). The adsorptive removal of cationic dye from aqueous solution using poly (methacrylic acid) hydrogels: part-I. Equilibrium studies. International Journal of Environmental Sciences, 2, 1609–1624.

  • Cândido, J. d. S., Pereira, A. G. B., Fajardo, A. R., Ricardo, N. M. P. S., Feitosa, J. P. A., Muniz, E. C., & Rodrigues, F. H. A. (2013). Poly(acrylamide-co-acrylate)/rice husk ash hydrogel composites. II. Temperature effect on rice husk ash obtention. Composites Part B: Engineering, 51, 246–253.

    Article  Google Scholar 

  • Chaudhary, D. S., Jollands, M. C., & Cser, F. (2002). Understanding rice hull ash as fillers in polymers: a review. Silicon Chemistry, 1, 281–289.

    Article  CAS  Google Scholar 

  • Delmar, K., & Bianco-Peled, H. (2016). Composite chitosan hydrogels for extended release of hydrophobic drugs. Carbohydrate Polymers, 136, 570–580.

    Article  CAS  Google Scholar 

  • Elisseeff, J. (2008). Hydrogels: structure starts to gel. Nature Materials, 7, 271–273.

    Article  CAS  Google Scholar 

  • Freni, A., Maggio, G., Sapienza, A., Frazzica, A., Restuccia, G., & Vasta, S. (2016). Comparative analysis of promising adsorbent/adsorbate pairs for adsorptive heat pumping, air conditioning and refrigeration. Applied Thermal Engineering, 104, 85–95.

    Article  CAS  Google Scholar 

  • Gomes, R. F., de Azevedo, A. C. N., Pereira, A. G. B., Muniz, E. C., Fajardo, A. R., & Rodrigues, F. H. A. (2015). Fast dye removal from water by starch-based nanocomposites. Journal of Colloid and Interface Science, 454, 200–209.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Carrott, P. J. M., Ribeiro Carrott, M. M. L., & Suhas. (2009). Low-cost adsorbents: growing approach to wastewater treatment—a review. Critical Reviews in Environmental Science and Technology, 39, 783–842.

    Article  Google Scholar 

  • Hill, K., Hu, K.-Q., Cottrell, A., Teichman, S., & Hillebrand, D. J. (2003). Charcoal-based hemodiabsorption liver support for episodic type C hepatic encephalopathy. The American Journal of Gastroenterology, 98, 2763–2770.

    Article  CAS  Google Scholar 

  • Isobe, N., Chen, X., Kim, U.-J., Kimura, S., Wada, M., Saito, T., & Isogai, A. (2013). TEMPO-oxidized cellulose hydrogel as a high-capacity and reusable heavy metal ion adsorbent. Journal of Hazardous Materials, 260, 195–201.

    Article  CAS  Google Scholar 

  • Jasminská, N., Brestovič, T., Puškár, M., Grega, R., Rajzinger, J., & Korba, J. (2014). Evaluation of hydrogen storage capacities on individual adsorbents. Measurement, 56, 219–230.

    Article  Google Scholar 

  • Kalapathy, U., Proctor, A., & Shultz, J. (2002). An improved method for production of silica from rice hull ash. Bioresource Technology, 85, 285–289.

    Article  CAS  Google Scholar 

  • Kubo, T. & Otsuka, K. (2016). Recent progress for the selective pharmaceutical analyses using molecularly imprinted adsorbents and their related techniques: a review. Journal of Pharmaceutical and Biomedical Analysis, 130, 68–80.

  • Lessa, E. F., Gularte, M. S., Garcia, E. S. & Fajardo, A. R. 2016. Orange waste: a valuable carbohydrate source for the development of beads with enhanced adsorption properties for cationic dyes. Carbohydrate Polymers, 15, 68–80. doi:10.1016/j.carbpol.2016.10.019.

  • Liu, Y., Zheng, Y., & Wang, A. (2010). Enhanced adsorption of methylene blue from aqueous solution by chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites. Journal of Environmental Sciences, 22, 486–493.

    Article  CAS  Google Scholar 

  • Liu, Z., Wang, H., Liu, C., Jiang, Y., Yu, G., Mu, X., & Wang, X. (2012). Magnetic cellulose-chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions. Chemical Communications, 48, 7350–7352.

    Article  CAS  Google Scholar 

  • Mall, I. D., Srivastava, V. C., Kumar, G. V. A., & Mishra, I. M. (2006). Characterization and utilization of mesoporous fertilizer plant waste carbon for adsorptive removal of dyes from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 278, 175–187.

    Article  CAS  Google Scholar 

  • Mohamed, E. F., Sayed Ahmed, S. A., Abdel-Latif, N. M., & El-Mekawy, A. (2016). Air purifier devices based on adsorbents produced from valorization of different environmental hazardous materials for ammonia gas control. RSC Advances, 6, 57284–57292.

    Article  CAS  Google Scholar 

  • Önnby, L., Pakade, V., Mattiasson, B., & Kirsebom, H. (2012). Polymer composite adsorbents using particles of molecularly imprinted polymers or aluminium oxide nanoparticles for treatment of arsenic contaminated waters. Water Research, 46, 4111–4120.

    Article  Google Scholar 

  • Ooi, S. Y., Ahmad, I., & Amin, M. C. I. M. (2016). Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems. Industrial Crops and Products, 93, 227–234.

    Article  CAS  Google Scholar 

  • Paria, S., & Khilar, K. C. (2004). A review on experimental studies of surfactant adsorption at the hydrophilic solid–water interface. Advances in Colloid and Interface Science, 110, 75–95.

    Article  CAS  Google Scholar 

  • Paulino, A. T., Guilherme, M. R., Reis, A. V., Campese, G. M., Muniz, E. C., & Nozaki, J. (2006). Removal of methylene blue dye from an aqueous media using superabsorbent hydrogel supported on modified polysaccharide. Journal of Colloid and Interface Science, 301, 55–62.

    Article  CAS  Google Scholar 

  • Paulino, A. T., Pereira, A. G. B., Fajardo, A. R., Erickson, K., Kipper, M. J., Muniz, E. C., Belfiore, L. A., & Tambourgi, E. B. (2012). Natural polymer-based magnetic hydrogels: potential vectors for remote-controlled drug release. Carbohydrate Polymers, 90, 1216–1225.

    Article  CAS  Google Scholar 

  • Piccin, J. S., Dotto, G. L., & Pinto, L. A. A. (2011). Adsorption isotherms and thermochemical data of FD&C Red no. 40 binding by chitosan. Brazilian Journal of Chemical Engineering, 28, 295–304.

    Article  CAS  Google Scholar 

  • Postai, D. L., Demarchi, C. A., Zanatta, F., Melo, D. C. C., & Rodrigues, C. A. (2016). Adsorption of rhodamine B and methylene blue dyes using waste of seeds of Aleurites Moluccana, a low cost adsorbent. Alexandria Engineering Journal, 55, 1713–1723.

    Article  Google Scholar 

  • Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: a review. Journal of Hazardous Materials, 177, 70–80.

    Article  CAS  Google Scholar 

  • Rouquerol, F., Rouquerol, J., & Sing, K. (1999). Adsorption by powders and porous solids. San Diego: Academic Press.

  • Rodrigues, F. H. A., Fajardo, A. R., Pereira, A. G. B., Ricardo, N. M. P. S., Feitosa, J. P. A., & Muniz, E. C. (2012). Chitosan-graft-poly(acrylic acid)/rice husk ash based superabsorbent hydrogel composite: preparation and characterization. Journal of Polymer Research, 19, 1–10.

    Article  Google Scholar 

  • Rodrigues, F. H. A., Pereira, A. G. B., Fajardo, A. R., & Muniz, E. C. (2013). Synthesis and characterization of chitosan-graft-poly(acrylic acid)/nontronite hydrogel composites based on a design of experiments. Journal of Applied Polymer Science, 128, 3480–3489.

    Article  CAS  Google Scholar 

  • Rodrigues, F. H. A., Spagnol, C., Pereira, A. G. B., Martins, A. F., Fajardo, A. R., Rubira, A. F. & Muniz, E. C. (2014). Superabsorbent hydrogel composites with a focus on hydrogels containing nanofibers or nanowhiskers of cellulose and chitin. Journal of Applied Polymer Science, 131, 1–13.

  • Sezgin, N., & Balkaya, N. (2016). Adsorption of heavy metals from industrial wastewater by using polyacrylic acid hydrogel. Desalination and Water Treatment, 57, 2466–2480.

    Article  CAS  Google Scholar 

  • Singh, T., & Singhal, R. (2013). Reuse of a waste adsorbent poly(AAc/AM/SH)-Cu superabsorbent hydrogel, for the potential phosphate ion removal from waste water: matrix effects, adsorption kinetics, and thermodynamic studies. Journal of Applied Polymer Science, 129, 3126–3139.

    Article  CAS  Google Scholar 

  • Spagnol, C., Rodrigues, F. H. A., Pereira, A. G. B., Fajardo, A. R., Rubira, A. F., & Muniz, E. C. (2012). Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly(acrylic acid). Carbohydrate Polymers, 87, 2038–2045.

    Article  CAS  Google Scholar 

  • Tabak, A., Afsin, B., Caglar, B., & Koksal, E. (2007). Characterization and pillaring of a Turkish bentonite (Resadiye). Journal of Colloid and Interface Science, 313, 5–11.

    Article  CAS  Google Scholar 

  • Wang, L., Zhang, J., & Wang, A. (2011). Fast removal of methylene blue from aqueous solution by adsorption onto chitosan-g-poly (acrylic acid)/attapulgite composite. Desalination, 266, 33–39.

    Article  CAS  Google Scholar 

  • Wang, N., Han, Y., Liu, Y., Bai, T., Gao, H., Zhang, P., Wang, W., & Liu, W. (2012). High-strength hydrogel as a reusable adsorbent of copper ions. Journal of Hazardous Materials, 213–214, 258–264.

    Article  Google Scholar 

  • Wang, Y., Wang, W., & Wang, A. (2013). Efficient adsorption of methylene blue on an alginate-based nanocomposite hydrogel enhanced by organo-illite/smectite clay. Chemical Engineering Journal, 228, 132–139.

    Article  CAS  Google Scholar 

  • Wiśniewski, M., Pacholczyk, A., Terzyk, A. P., & Rychlicki, G. (2011). New phosphorus-containing spherical carbon adsorbents as promising materials in drug adsorption and release. Journal of Colloid and Interface Science, 354, 891–894.

    Article  Google Scholar 

  • Wu, F.-C., Tseng, R.-L., Huang, S.-C., & Juang, R.-S. (2009). Characteristics of pseudo-second-order kinetic model for liquid-phase adsorption: a mini-review. Chemical Engineering Journal, 151, 1–9.

    Article  CAS  Google Scholar 

  • Wu, N., Luo, Z., Ge, Y., Guo, P., Du, K., Tang, W., Du, W., Zeng, A., Chang, C., & Fu, Q. (2016). A novel surface molecularly imprinted polymer as the solid-phase extraction adsorbent for the selective determination of ampicillin sodium in milk and blood samples. Journal of Pharmaceutical Analysis, 6, 157–164.

    Article  Google Scholar 

  • Yu, M., Sun, A., Zhang, Y., & Liu, R. (2014). Purification of coumarin compounds from cortex Fraxinus by adsorption chromatography. Journal of Chromatographic Science, 52, 1033–1037.

    Article  CAS  Google Scholar 

  • Zadaka-Amir, D., Bleiman, N., & Mishael, Y. G. (2013). Sepiolite as an effective natural porous adsorbent for surface oil-spill. Microporous and Mesoporous Materials, 169, 153–159.

    Article  CAS  Google Scholar 

  • Zhang, L. Y., Zhang, W., Zhou, Z., & Li, C. M. (2016). γ-Fe2O3 nanocrystals-anchored macro/meso-porous graphene as a highly efficient adsorbent toward removal of methylene blue. Journal of Colloid and Interface Science, 476, 200–205.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio G. B. Pereira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaz, M.G., Pereira, A.G.B., Fajardo, A.R. et al. Methylene Blue Adsorption on Chitosan-g-Poly(Acrylic Acid)/Rice Husk Ash Superabsorbent Composite: Kinetics, Equilibrium, and Thermodynamics. Water Air Soil Pollut 228, 14 (2017). https://doi.org/10.1007/s11270-016-3185-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3185-4

Keywords

Navigation