Skip to main content
Log in

Effects of Dairy Manure Management Practices on E. coli Concentration and Diversity

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Dairy cattle manure has been implicated as a major source of fecal contamination in non-point source agricultural runoff in watersheds. Four different dairy farms in central Texas, each utilizing a different dairy manure management practice, in the Leon River watershed were sampled for E. coli using EPA Method 1603, with a percentage of isolates genotyped and phylotyped using the Clermont quadruplex PCR method. E. coli concentration was reduced as manure moved through the management process with tiered management systems lowering concentration the most. E. coli genotypes showed no correlation with sampling season or management practice. The highest percentage of unique genotypes was observed in dairy 2, which consisted of a settling basin then lagoon. One genotype was seen across all dairies and composed 15% of all genotypes characterized. E. coli phylotypes showed no seasonal or management practice trend. B1 was the most common phylotype isolated from all dairies and time periods, which was expected. Potentially pathogenic phylotypes were rarely observed, which could indicate isolation from pathogenic E. coli introduction. Dairy manure management practices that separate solid from liquid waste reduced E. coli concentrations the most based on these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alizade, H., Ghanbarpour, R., & Nekoubin, M. (2014). Phylotyping of commensal Escherichia coli isolates from dairy cows and calves by PCR. Iranian Journal of Public Health, 43(2), 109.

    Google Scholar 

  • Alm, E. W., & Walk, S. T. (2011). The niche of Escherichia coli. Population Genetics of Bacteria: a Tribute to Thomas S.Whittam.

  • Badouei, M. A., Jajarmi, M., & Mirsalehian, A. (2015). Virulence profiling and genetic relatedness of Shiga toxin-producing Escherichia coli isolated from humans and ruminants. Comparative Immunology, Microbiology, & Infectious Diseases, 38, 15–20.

    Article  Google Scholar 

  • Baldy-Chudzik, K., Mackiewicz, P., & Stosik, M. (2008). Phylogenetic background, virulence gene profiles, and genomic diversity in commensal Escherichia coli isolated from ten mammal species living in one zoo. Veterinary Microbiology, 131(1), 173–184.

    Article  CAS  Google Scholar 

  • Blayney, D. P. (2002). The changing landscape of US milk production. US Department of Agriculture, Economic Research Service.

  • Bok, E., Mazurek, J., Stosik, M., Wojciech, M., & Baldy-Chudzik, K. (2015). Prevalence of virulence determinants and antimicrobial resistance among commensal Escherichia coli derived from dairy and beef cattle. International Journal of Environmental Research and Public Health, 12(1), 970–985.

    Article  Google Scholar 

  • Callaway, T., Elder, R., Keen, J., Anderson, R., & Nisbet, D. (2003). Forage feeding to reduce preharvest Escherichia coli populations in cattle, a review. Journal of Dairy Science, 86(3), 852–860.

    Article  CAS  Google Scholar 

  • Clermont, O., Gordon, D. M., Brisse, S., Walk, S. T., & Denamur, E. (2011). Characterization of the cryptic Escherichia lineages: rapid identification and prevalence. Environmental Microbiology, 13(9), 2468–2477.

    Article  Google Scholar 

  • Clermont, O., Christenson, J. K., Denamur, E., & Gordon, D. M. (2013). The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environmental Microbiology Reports, 5(1), 58–65.

    Article  CAS  Google Scholar 

  • Cook, K. L., Bolster, C. H., Ayers, K. A., & Reynolds, D. N. (2011). Escherichia coli diversity in livestock manures and agriculturally impacted stream waters. Current Microbiology, 63(5), 439–449.

    Article  CAS  Google Scholar 

  • Dixit, S. M., Gordon, D. M., Wu, X. Y., Chapman, T., Kailasapathy, K., & Chin, J. J. (2004). Diversity analysis of commensal porcine Escherichia coli—associations between genotypes and habitat in the porcine gastrointestinal tract. Microbiology, 150(Pt 6), 1735–1740.

    Article  CAS  Google Scholar 

  • Escobar‐Páramo, P., Menac’h, L., Le Gall, T., Amorin, C., Gouriou, S., Picard, B., Skurnik, D., & Denamur, E. (2006). Identification of forces shaping the commensal Escherichia coli genetic structure by comparing animal and human isolates. Environmental Microbiology, 8(11), 1975–1984.

    Article  Google Scholar 

  • Gordon, D. M., & Cowling, A. (2003). The distribution and genetic structure of Escherichia coli in Australian vertebrates: host and geographic effects. Microbiology, 149(Pt 12), 3575–3586.

    Article  CAS  Google Scholar 

  • Guan, T. Y., & Holley, R. A. (2003). Pathogen survival in swine manure environments and transmission of human enteric illness—a review. Journal of Environmental Quality, 32(2), 383–392.

    Article  CAS  Google Scholar 

  • Hancock, D. D., Rice, D. H., Herriott, D. E., Besser, T. E., Ebel, E. D., & Carpenters, L. V. (1997). Effects of farm manure-handling practices on Escherichia coli O157 prevalence in cattle. Journal of Food Protection, 60(4), 363–366.

    Article  Google Scholar 

  • Himathongkham, S., Bahari, S., Riemann, H., & Cliver, D. (1999). Survival of Escherichia coli O157: H7 and Salmonella typhimurium in cow manure and cow manure slurry. FEMS Microbiology Letters, 178(2), 251–257.

    Article  CAS  Google Scholar 

  • Hussein, H. S., & Sakuma, T. (2005). Prevalence of shiga toxin-producing Escherichia coli in dairy cattle and their products. Journal of Dairy Science, 88, 450–465.

    Article  CAS  Google Scholar 

  • Ibekwe, A. M., Grieve, C. M., & Lyon, S. R. (2003). Characterization of microbial communities and composition in constructed dairy wetland wastewater effluent. Applied Environmental Microbiology, 69(9), 5060–5069.

    Article  CAS  Google Scholar 

  • Islam, M., Doyle, M. P., Phatak, S. C., Millner, P., & Jiang, X. (2005). Survival of Escherichia coli O157: H7 in soil and on carrots and onions grown in fields treated with contaminated manure composts or irrigation water. Food Microbiology, 22(1), 63–70.

    Article  Google Scholar 

  • Jenkins, M., Hartel, P., Olexa, T., & Stuedemann, J. (2003). Putative temporal variability of ribotypes from yearling steers. Journal of Environmental Quality, 32(1), 305–309.

    Article  CAS  Google Scholar 

  • Johnson, J. R., & Stell, A. L. (2000). Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. Journal of Infectious Diseases, 181, 261–272.

    Article  CAS  Google Scholar 

  • Khaleel, R., Reddy, K., & Overcash, M. (1980). Transport of potential pollutants in runoff water from land areas receiving animal wastes: a review. Water Research, 14(5), 421–436.

    Article  CAS  Google Scholar 

  • Kim, J., Luo, F., & Jiang, X. (2009). Factors impacting the regrowth of Escherichia coli O157: H7 in dairy manure compost. Journal of Food Protection, 2(7), 1576–1584.

    Article  Google Scholar 

  • Kudva, I. T., Blanch, K., & Hovde, C. J. (1998). Analysis of Escherichia coli O157:H7 survival in ovine or bovine manure and manure slurry. Applied and Environmental Microbiology, 64(9), 3166–3174.

    CAS  Google Scholar 

  • Lecointre, G., Rachdi, L., Darlu, P., & Denamur, E. (1998). Escherichia coli molecular phylogeny using the incongruence length difference test. Molecular Biology and Evolution, 15, 1685–1695.

    Article  CAS  Google Scholar 

  • Lu, Z., Lapen, D., Scott, A., Dang, A., & Topp, E. (2005). Identifying host sources of fecal pollution: diversity of Escherichia coli in confined dairy and swine production systems. Applied Environmental Microbiology, 71(10), 5992–5998.

    Article  CAS  Google Scholar 

  • Maule, A. (2000). Survival of verocytotoxigenic Escherichia coli O157 in soil, water and on surfaces. Journal of Applied Microbiology, 88(S1), 71S–78S.

    Article  Google Scholar 

  • McGarvey, J. A., Miller, W. G., Sanchez, S., & Stanker, L. (2004). Identification of bacterial populations in dairy wastewaters by use of 16S rRNA gene sequences and other genetic markers. Applied Environmental Microbiology, 70(7), 4267–4275.

    Article  CAS  Google Scholar 

  • Mubiru, D., Coyne, M. S., & Grove, J. H. (2000). Mortality of Escherichia coli O157: H7 in two soils with different physical and chemical properties. Journal of Environmental Quality, 29(6), 1821–1825.

    Article  CAS  Google Scholar 

  • National Resources Conservation Service (NRCS) (1992). Agricultural waste management field handbook. Resource document. http://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/landuse /crops. Accessed 14 Nov 2015.

  • Nicholson, F. A., Groves, S. J., & Chambers, B. J. (2005). Pathogen survival during livestock manure storage and following land application. Bioresource Technology, 96(2), 135–143.

    Article  CAS  Google Scholar 

  • Partridge, J. D., Scott, C., Tang, Y., Poole, R. K., & Green, J. (2006). Escherichia coli transcriptome dynamics during the transition from anaerobic to aerobic conditions. Journal of Biological Chemistry, 281(38), 27806–27815.

    Article  CAS  Google Scholar 

  • Pell, A. N. (1997). Manure and microbes: public and animal health problem? Journal of Dairy Science, 80(10), 2673–2681.

    Article  CAS  Google Scholar 

  • Peu, P., Brugere, H., Pourcher, A. M., Kerouredan, M., Godon, J. J., Delgenes, J. P., & Dabert, P. (2006). Dynamics of a pig slurry microbial community during anaerobic storage and management. Applied Environmental Microbiology, 72, 3578–3585.

    Article  CAS  Google Scholar 

  • Picard, B., Sevali Garcia, J., Gouriou, S., Duriez, P., Brahimi, N., & Bingen, E. (1999). The link between phylogeny and virulence in Escherichia coli extra-intestinal infection. Infection and Immunity, 67, 546–553.

    CAS  Google Scholar 

  • Rogers, S., & Haines, J. (2005). Detecting and mitigating the environmental impact of fecal pathogens originating from confined animal feeding operations: review.

  • Semenov, A. V., van Overbeek, L., & van Bruggen, A. H. (2009). Percolation and survival of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in soil amended with contaminated dairy manure or slurry. Applied Environmental Microbiology, 75(10), 3206–3215.

    Article  CAS  Google Scholar 

  • Shepherd, M. W., Liang, P., Jiang, X., Doyle, M. P., Erickson, M. C., & Erickson, M. C. F. (2007). Fate of Escherichia coli O157: H7 during on-farm dairy manure–based composting. Journal of Food Protection®, 70(12), 2708–2716.

    Article  Google Scholar 

  • Shere, J. A., Bartlett, K. J., & Kaspar, C. W. (1998). Longitudinal study of Escherichia coli O157:H7 dissemination on four dairy farms in Wisconsin. Applied Environmental Microbiology, 64(4), 1390–1399.

    CAS  Google Scholar 

  • Soller, J. A. (2006). Use of microbial risk assessment to inform the national estimate of acute gastrointestinal illness attributable to microbes in drinking water. Journal of Water and Health, 4, 165–186.

    Article  Google Scholar 

  • Tenaillon, O., Skurnik, D., Picard, B., & Denamur, E. (2010). The population genetics of commensal Escherichia coli. Nature Reviews Microbiology, 8(3), 207–217.

    Article  CAS  Google Scholar 

  • Texas Commission on Environmental Quality (TCEQ) (2012). Summary 2012 Texas integrated report for clean water act sections 305(b) and 303(d). Resource document. http://www.tceq.state.tx.us/waterquality/assessment/waterquality/assessment/12twqi/twqi12. Accessed 17 Nov 2015.

  • Texas Commission on Environmental Quality (TCEQ) (2016). TCEQ 303(d) list. Resource documents. www.tceq.state.tx.us. Accessed 20 Nov 2015.

  • Versalovic, J., Koeuth, T., & Lupski, J. R. (1991). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Research, 19(24), 6823–6831.

    Article  CAS  Google Scholar 

  • Walk, S. T., Mladonicky, J. M., Middleton, J. A., Heidt, A. J., Cunningham, J. R., Bartlett, P., Sato, K., & Whittam, T. S. (2007). Influence of antibiotic selection on genetic composition of Escherichia coli populations from conventional and organic dairy farms. Applied Environmental Microbiology, 73(19), 5982–5989.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Texas A&M University for a Diversity Fellowship and the SLOAN foundation for the SLOAN Fellowship to K. Howard. Also, Dr. Pauline Wanjugi, Heidi Mjelde, Tiffany Garner, and Nicole Cherry are thanked for their valuable assistance on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghupathy Karthikeyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howard, K.J., Martin, E., Gentry, T. et al. Effects of Dairy Manure Management Practices on E. coli Concentration and Diversity. Water Air Soil Pollut 228, 4 (2017). https://doi.org/10.1007/s11270-016-3182-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3182-7

Keywords

Navigation