Water, Air, & Soil Pollution

, 227:466 | Cite as

Heavy Metal Pollution Structures Soil Bacterial Community Dynamics in SW Spain Polluted Salt Marshes

  • Jennifer Mesa
  • Enrique Mateos-Naranjo
  • Eloísa Pajuelo
  • Miguel Ángel Caviedes
  • Ignacio David Rodríguez-LlorenteEmail author


Soil bacterial community dynamics was assessed in some of the most polluted estuaries by heavy metals of the world. The influence of seasons, heavy metal pollution, and Spartina maritima rhizosphere throughout an entire year were compared in Tinto, Odiel, and Piedras salt marshes from Huelva, Spain. The less contaminated estuary showed the highest bacterial biodiversity, especially in rhizosphere, which was deeply affected by seasonal changes. On the contrary, bacterial diversity in the most polluted salt marsh was lower and neither plant roots nor seasons had a marked effect on their annual dynamics. This work provided evidence that soil bacterial communities in south western Spain estuarine sediments were not completely related to the plant species they inhabit with, but to environmental conditions, prioritizing pollution levels. These results may be considered for conducting planned restoration strategies using native plant growth promoting rhizobacteria together with heavy metal hyperaccumulator S. maritima to preserve these endangered ecosystems.


DGGE Heavy metals Salt marsh Seasons Soil bacterial dynamics Spartina maritima 



This work was supported by the Junta de Andalucía, Spain [P11-RNM-7274MO]; the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spain [RTA2012-00006-C03-03] and the Ministerio de Educación, Cultura y Deporte, Spain [FPU grant number AP2012-1809 to J.M.]. Authors are grateful to ResBioAgro company (Seville, Spain) and S. Navarro-Torre for technical support, and Dr. F. Balao for statistical analysis assistance. Authors also gratefully acknowledge the anonymous reviewer who substantially improved the earlier draft of this manuscript with valuable and constructive comments.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11270_2016_3176_MOESM1_ESM.pdf (342 kb)
ESM 1 (PDF 342 kb)


  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.CrossRefGoogle Scholar
  2. Amann, R. I., Ludwig, W., & Schleifer, K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59(1), 143–169. 0146-0749/95/$04.00 + 0.Google Scholar
  3. Andrades-Moreno, L., Del Castillo, I., Parra, R., Doukkali, B., Redondo-Gómez, S., Pérez-Palacios, P., Caviedes, M. A., Pajuelo, E., & Rodríguez-Llorente, I. D. (2014). Prospecting metal-resistant plant-growth promoting rhizobacteria for rhizoremediation of metal contaminated estuaries using Spartina densiflora. Environmental Science and Pollution Research International, 21(5), 3713–3721. doi: 10.1007/s11356-013-2364-8.CrossRefGoogle Scholar
  4. Borrego, J., Carro, B., Grande, J. A., de la Torre, M. L., Valente, T., & Santisteban, M. (2013). Control factors on the composition of superficial sediments in estuaries of the coast of Huelva (SW Spain): a statistical approach. Journal of Iberian Geology, 39, 223–232. doi: 10.5209/rev_JIGE.2013.v39.n1.41760.Google Scholar
  5. Brusati, E. D., & Grosholz, E. D. (2006). Native and introduced ecosystem engineers produce contrasting effects on estuarine infaunal communities. Biological Invasions, 8(4), 683–695. doi: 10.1007/s10530-005-2889-y.CrossRefGoogle Scholar
  6. Buchan, A., Newell, S. Y., Butler, M., Biers, E. J., Hollibaugh, J. T., & Moran, M. A. (2003). Dynamics of bacterial and fungal communities on decaying salt marsh grass. Applied and Environmental Microbiology, 69(11), 6676–6687. doi: 10.1128/AEM.69.11.6676.CrossRefGoogle Scholar
  7. Buée, M., De Boer, W., Martin, F., van Overbeek, L., & Jurkevitch, E. (2009). The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea and fungi, and of some of their structuring factors. Plant and Soil, 321(1–2), 189–212. doi: 10.1007/s11104-009-9991-3.CrossRefGoogle Scholar
  8. Burns, J. H., Anacker, B. L., Strauss, S. Y., & Burke, D. J. (2015). Soil microbial community variation correlates most strongly with plant species identity, followed by soil chemistry, spatial location and plant genus. AoB Plants, 7(1), 1–10. doi: 10.1093/aobpla/plv030.Google Scholar
  9. Cambrollé, J., Redondo-Gómez, S., Mateos-Naranjo, E., & Figueroa, M. E. (2008). Comparison of the role of two Spartina species in terms of phytostabilization and bioaccumulation of metals in the estuarine sediment. Marine Pollution Bulletin, 56, 2037–2042. doi: 10.1016/j.marpolbul.2008.08.008.CrossRefGoogle Scholar
  10. Castillo, J., & Figueroa, E. (2009). Restoring salt marshes using small cordgrass, Spartina maritima. Restoration Ecology, 17, 324–326. doi: 10.1111/j.1526-100X.2008.00465.x.CrossRefGoogle Scholar
  11. Castillo, J. M., Mateos-Naranjo, E., Nieva, F. J., & Figueroa, E. (2008). Plant zonation at salt marshes of the endangered cordgrass Spartina maritima invaded by Spartina densiflora. Hydrobiologia, 614, 363–371. doi: 10.1007/s10750-008-9520-z.CrossRefGoogle Scholar
  12. Cleary, D. F. R., Smalla, K., Mendonça-Hagler, L. C. S., & Gomes, N. C. M. (2012). Assessment of variation in bacterial composition among microhabitats in a mangrove environment using DGGE fingerprints and barcoded pyrosequencing. PLoS ONE, 7(1), 1–8. doi: 10.1371/journal.pone.0029380.CrossRefGoogle Scholar
  13. Curl, E.A., & Truelove, B. (1986). The rhizosphere. Springer.Google Scholar
  14. Dray, S., & Dufour, A.B. (2007). The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software, 22(4): 1–20.
  15. Feris, K. P., Ramsey, P. W., Frazar, C., Rillig, M., Moore, J. N., Gannon, J. E., & Holben, W. E. (2004). Seasonal dynamics of shallow-hyporheic-zone microbial community structure along a heavy-metal contamination gradient. Applied and Environmental Microbiology, 70(4), 2323–2331. doi: 10.1128/AEM.70.4.2323.CrossRefGoogle Scholar
  16. Ferrero, M. A., Menoyo, E., Lugo, M. A., Negritto, M. A., Farías, M. E., Anton, A. M., & Siñeriz, F. (2010). Molecular characterization and in situ detection of bacterial communities associated with rhizosphere soil of high altitude native Poaceae from the Andean Puna region. Journal of Arid Environments, 74(10), 1177–1185. doi: 10.1016/j.jaridenv.2010.04.008.CrossRefGoogle Scholar
  17. Fromin, N., Hamelin, J., Tarnawski, S., Roesti, D., Jourdain-Miserez, K., Forestier, N., Teyssier-Cuvelle, S., Gillet, F., Aragno, M., & Rossi, P. (2002). Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environmental Microbiology, 4(11), 634–643. doi: 10.1046/j.1462-2920.2002.00358.x.CrossRefGoogle Scholar
  18. Heuer, H., Krsek, M., Baker, P., Smalla, K., & Wellington, E. M. H. (1997). Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel- electrophoretic separation in denaturing gradients. Applied and Environmental Microbiology, 63(8), 3233–3241.Google Scholar
  19. Hill, R., Saetnan, E. R., Scullion, J., Gwynn-Jones, D., Ostle, N., & Edwards, A. (2015). Temporal and spatial influences incur reconfiguration of Arctic heathland soil bacterial community structure. Environmental Microbiology. doi: 10.1111/1462-2920.13017.Google Scholar
  20. Hong, Y., Liao, D., Hu, A., Wang, H., Chen, J., Khan, S., Su, J., & Li, H. (2014). Diversity and function of endophytic bacteria in roots of exotic plant Spartina alterniflora. Chinese Journal of Applied & Environmental Biology, 20(5), 856–862. doi: 10.3724/SP.J.1145.2014.03027.Google Scholar
  21. Hong, Y., Liao, D., Hu, A., Wang, H., Chen, J., Khan, S., Su, J., & Li, H. (2015). Diversity of endophytic and rhizoplane bacterial communities associated with exotic Spartina alterniflora and native mangrove using Illumina amplicon sequencing. Canadian Journal of Microbiology, 61(10), 723–733. doi: 10.1139/cjm-2015-0079.CrossRefGoogle Scholar
  22. Junta de Andalucía, Consejería de Medio Ambiente. (1999). Los criterios y estándares para declarar un suelo contaminado en Andalucía y la metodología y técnicas de toma de muestra y análisis para su investigación.Google Scholar
  23. Khan, Z., & Doty, S.L. (2011). Endophyte-assisted phytoremediation. Current Top Plant Biology, 12, 97–105,
  24. Lacap, D. C., Barraquio, W., & Pointing, S. B. (2007). Thermophilic microbial mats in a tropical geothermal location display pronounced seasonal changes but appear resilient to stochastic disturbance. Environmental Microbiology, 9(12), 3065–3076. doi: 10.1111/j.1462-2920.2007.01417.x.CrossRefGoogle Scholar
  25. Lazzaro, A., Hilfiker, D., & Zeyer, J. (2015). Structures of microbial communities in alpine soils: seasonal and elevational effects. Frontiers in Microbiology, 6, 1–13. doi: 10.3389/fmicb.2015.01330.CrossRefGoogle Scholar
  26. Legault, B., Lopez-Lopez, A., Alba-Casado, J. C., Doolittle, W. F., Bolhuis, H., Rodriguez-Valera, F., & Papke, R. T. (2006). Environmental genomics of “Haloquadratum walsbyi” in a saltern crystallizer indicates a large pool of accessory genes in an otherwise coherent species. BMC Genomics, 7, 171. doi: 10.1186/1471-2164-7-171.CrossRefGoogle Scholar
  27. Lovell, C.R. (2005). Belowground interactions among salt marsh plants and microorganisms. In: Interactions between macro- and microorganisms in marine sediments. Coastal and Estuarine Studies, 60, doi:  10.1029/CE060.
  28. Lovell, C. R., Piceno, Y. M., Quattro, J. M., & Bagwell, C. E. (2000). Molecular analysis of diazotroph diversity in the rhizosphere of the smooth cordgrass, Spartina alterniflora. Applied and Environmental Microbiology, 66(9), 3814–3822. doi: 10.1128/AEM.66.9.3814-3822.2000.CrossRefGoogle Scholar
  29. Maggurran, A.E. (1988). Ecological diversity and its measurement. Princeton University Press.Google Scholar
  30. Mateos-Naranjo, E., Redondo-Gómez, S., Andrades-Moreno, L., & Davy, A. J. (2010). Growth and photosynthetic responses of the cordgrass Spartina maritima to CO2 enrichment and salinity. Chemosphere, 81, 725–731. doi: 10.1016/j.chemosphere.2010.07.047.CrossRefGoogle Scholar
  31. McCaig, A. E., Glover, L. A., & Prosser, J. I. (2001). Numerical analysis of grassland bacterial community structure under different land management regimens by using 16S ribosomal DNA sequence data and denaturing gradient gel electrophoresis banding patterns. Applied and Environmental Microbiology, 67(10), 4554–4559. doi: 10.1128/AEM.67.10.4554.CrossRefGoogle Scholar
  32. Mesa, J., Mateos-Naranjo, E., Caviedes, M. A., Redondo-Gómez, S., Pajuelo, E., & Rodríguez-Llorente, I. D. (2015a). Scouting contaminated estuaries: heavy metal resistant and plant growth promoting rhizobacteria in the native metal rhizoaccumulator Spartina maritima. Marine Pollution Bulletin, 90, 150–159. doi: 10.1016/j.marpolbul.2014.11.002.CrossRefGoogle Scholar
  33. Mesa, J., Rodríguez-Llorente, I. D., Pajuelo, E., Barcia-Piedras, J. M., Caviedes, M. A., Redondo-Gómez, S., & Mateos-Naranjo, E. (2015b). Moving closer towards restoration of contaminated estuaries: bioaugmentation with autochthonous rhizobacteria improves metal rhizoaccumulation in native Spartina maritima. Journal of Hazardous Materials, 300, 263–271. doi: 10.1016/j.jhazmat.2015.07.006.CrossRefGoogle Scholar
  34. Moreno, J., Moral, R., García-Morales, J.L., Pascual, J.A., & Bernal, M.P. (2014). Aspectos biológicos de la digestión anaeróbica. En: De residuo a recurso. El camino hacia la sostenibilidad. Ed. Paraninfo.Google Scholar
  35. Muyzer, G., & Smalla, K. (1998). Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. A Van Leeuw, 73, 127–141. doi: 10.1023/A:1000669317571.CrossRefGoogle Scholar
  36. Muyzer, G., Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for l6S rRNA. Applied and Environmental Microbiology, 59, 695–700.Google Scholar
  37. Neilson, J. W., Jordan, F. L., & Maier, R. M. (2014). Analysis of artifacts suggests DGGE should not be used for quantitative diversity analysis. Journal of Microbiological Methods, 92(3), 256–263. doi: 10.1016/j.mimet.2012.12.021.CrossRefGoogle Scholar
  38. Nie, M., Wang, M., & Li, B. (2009). Effects of salt marsh invasion by Spartina alterniflora on sulfate-reducing bacteria in the Yangtze River estuary, China. Ecological Engineering, 35(12), 1804–1808. doi: 10.1016/j.ecoleng.2009.08.002.CrossRefGoogle Scholar
  39. Nie, M., Gao, L. X., Yan, J. H., Fu, X. H., Xiao, M., Yang, J., & Li, B. (2010). Population variation of invasive Spartina alterniflora can differenciate bacterial diversity in its rhizosphere. Plant Ecology, 209, 219–226. doi: 10.1007/s11258-009-9687-z.CrossRefGoogle Scholar
  40. Phieler, R., Voit, A., & Kothe, E. (2014). Microbially supported phytoremediation of heavy metal contaminated soils: strategies and applications. Advances in Biochemical Engineering and Biotechnology, 141, 211–235. doi: 10.1007/10_2013_200.Google Scholar
  41. Redondo-Gómez, S. (2013). Bioaccumulation of heavy metals in Spartina. Functional Plant Biology, 40, 913–921. doi: 10.1071/FP12271.Google Scholar
  42. Regan, K. M., Nunanb, N., Boeddinghaus, R. S., Baumgartner, V., Berner, D., Boch, S., Oelmann, Y., Overmann, J., Prati, D., Schloter, M., Schmitt, B., Sorkau, E., Steffens, M., Kandeler, E., & Marhana, S. (2014). Seasonal controls on grassland microbial biogeography: are they governed by plants, abiotic properties or both? Soil Biology and Biochemistry, 71, 21–30. doi: 10.1016/j.soilbio.2013.12.024.CrossRefGoogle Scholar
  43. Rooney-Varga, J. N., Devereux, R., Evans, R. S., & Hines, M. E. (1997). Seasonal changes in the relative abundance of uncultivated sulfate-reducing bacteria in a salt marsh sediment and in the rhizosphere of Spartina alterniflora. Applied and Environmental Microbiology, 63(10), 3895–3901.Google Scholar
  44. Sauret, C., Tedetti, M., Guigue, C., Dumas, C., Lami, R., Pujo-Pay, M., Conan, P., Goutx, M., & Ghiglione, J. F. (2016). Influence of PAHs among other coastal environmental variables on total and PAH-degrading bacterial communities. Environmental Science and Pollution Research International, 23(5), 4242–4256. doi: 10.1007/s11356-015-4768-0.CrossRefGoogle Scholar
  45. Sekiguchi, H., Tomioka, N., Nakahara, T., & Uchiyama, H. (2001). A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis analysis. Biotechnology Letters, 23(15), 1205–1208. doi: 10.1023/A:1010517117046.CrossRefGoogle Scholar
  46. Shi, S., Nuccio, E., Herman, D. J., Rijkers, R., Estera, K., Li, J., da Rocha, U. N., He, Z., Pett-Ridge, J., Brodie, E. L., Zhou, J., & Firestone, M. (2015). Successional trajectories of rhizosphere bacterial communities over consecutive seasons. MBio, 6(4), e00746–15. doi: 10.1128/mBio.00746-15.CrossRefGoogle Scholar
  47. Shuang, J. L., Zhang, X. Y., Zhao, Z. Z., Yao, S. P., An, S. Q., Xue, Y. R., & Liu, C. H. (2009). Bacterial phylogenetic diversity in a Spartina marsh in China. Ecological Engineering, 35(4), 529–535. doi: 10.1016/j.ecoleng.2008.01.005.CrossRefGoogle Scholar
  48. Singh, B. K., Millard, P., Whiteley, A. S., & Murrel, L. J. C. (2004). Unravelling rhizosphere–microbial interactions: opportunities and limitations. Trends in Microbiology, 12, 386–393. doi: 10.1016/j.tim.2004.06.008.CrossRefGoogle Scholar
  49. Singh, B. K., Munro, S., Potts, J. M., & Millard, P. (2007). Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils. Applied Soil Ecology, 36, 147–155. doi: 10.1016/j.apsoil.2007.01.004.CrossRefGoogle Scholar
  50. Streten-Joyce, C., Manning, J., Gibb, K. S., Neilan, B. A., & Parry, D. L. (2013). The chemical composition and bacteria communities in acid and metalliferous drainage from the wet–dry tropics are dependent on season. Science of the Total Environment, 443, 65–79. doi: 10.1016/j.scitotenv.2012.10.024.CrossRefGoogle Scholar
  51. Su, J., Ouyang, W., Hong, Y., Liao, D., Khan, S., & Li, H. (2016). Responses of endophytic and rhizospheric bacterial communities of salt marsh plant (Spartina alterniflora) to polycyclic aromatic hydrocarbons contamination. Journal of Soils and Sediments, 16(2), 707–715. doi: 10.1007/s11368-015-1217-0.CrossRefGoogle Scholar
  52. Wan, X., Lei, M., & Chen, T. (2015). Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Science of the Total Environment. doi: 10.1016/j.scitotenv.2015.12.080.Google Scholar
  53. Wang, M., Chen, J. K., & Li, B. (2007). Characterization of bacterial community structure and diversity in rhizosphere soils of three plants in rapidly changing salt marshes using 16S rRNA. Pedosphere, 7(04), 545–556. doi: 10.1016/S1002-0160(07)60065-4.CrossRefGoogle Scholar
  54. Washington, H. G. (1984). Diversity, biotic and similarity indices. Water Research, 18, 653–694. doi: 10.1016/0043-1354(84)90164-7.CrossRefGoogle Scholar
  55. Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703.CrossRefGoogle Scholar
  56. Wilson, A.J. (1981). Archaeologists find “Missing Link” in Rio Tinto mining history. IAMS Newsletter, 2. London: University of London.Google Scholar
  57. Wintzingerode, F., Göbel, U. B., & Stackebrandt, E. (1997). Determination if microbial diversity in environmental samples: pitfalls of PCR-based analysis. FEMS Microbiology Reviews, 21, 213–229. doi: 10.1111/j.1574-6976.1997.tb00351.x.CrossRefGoogle Scholar
  58. Wright, E. S., Yilmaz, L. S., & Noguera, D. R. (2012). DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Applied and Environmental Microbiology, 78(3), 717–725. doi: 10.1128/AEM.06516-11.CrossRefGoogle Scholar
  59. Zhao, Y., Wu, F., Yang, W., Tan, B., & He, W. (2016). Variations in bacterial communities during foliar litter decomposition in the winter and growing seasons in an alpine forest of the eastern Tibetan Plateau. Canadian Journal of Microbiology, 62(1), 35–48. doi: 10.1139/cjm-2015-0448.CrossRefGoogle Scholar
  60. Zhong, W. H., & Cai, Z. C. (2004). Methods for studying soil microbial diversity. Chinese Journal of Applied Ecology, 15(5), 899–904.Google Scholar
  61. Zhong, W. H., Cai, Z. C., & Zhang, H. (2007). Effects of long-term application of inorganic fertilizers on biochemical properties of a rice-planting red soil. Pedosphere, 17(4), 419–428. doi: 10.1016/S1002-0160(07)60051-4.CrossRefGoogle Scholar
  62. Žifčáková, L., Větrovský, T., Howe, A., & Baldrian, P. (2016). Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environmental Microbiology, 18(1), 288–301. doi: 10.1111/1462-2920.13026.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jennifer Mesa
    • 1
  • Enrique Mateos-Naranjo
    • 2
  • Eloísa Pajuelo
    • 1
  • Miguel Ángel Caviedes
    • 1
  • Ignacio David Rodríguez-Llorente
    • 1
    Email author
  1. 1.Departamento de Microbiología y Parasitología, Facultad de FarmaciaUniversidad de SevillaSevillaSpain
  2. 2.Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevillaSpain

Personalised recommendations