Skip to main content
Log in

Removal Performance, Antibacterial Effects, and Toxicity Assessment of Ciprofloxacin Treated by the Electrocoagulation Process

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study is concerned with the removal performance of the antibiotic ciprofloxacin (CIP) from synthetic solutions by electrocoagulation (EC), as well as the toxic effects of treated CIP solutions. A response surface analysis (RSA) was applied to search optimal operational parameter values of the pH of solution, electrical current density (ECD), and electrolysis time (ET). The EC efficiency was evaluated by determining the total organic carbon (TOC) and CIP concentration performed by high-performance liquid chromatography. Although the best EC efficiency was attained at pH = 8, ECD = 22.2 A m−2, and ET = 75 min, toxicity and antibacterial tests were performed using Artemia salina cysts and Staphylococcus aureus and Escherichia coli microorganisms in a wide ET range and other pH and ECD values. Increasing optimal pH value (9), along with reducing optimal ECD value (18 A m−2) and regarding low ET values, similar results for the removal of CIP (98%) and TOC (87%) were also attained. Toxicity variation was observed during EC process in synthetic solutions with the lowest antibacterial effects due to CIP and recalcitrant compound residues after 40 min of ET. These results clearly showed that the EC process presents a promising alternative method for the treatment of wastewaters containing high CIP concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • APHA - American Public Health Association. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington: APHA.

    Google Scholar 

  • Arsand, D. R., Kummerer, K., & Martins, A. F. (2013). Removal of dexamethasone from aqueous solution and hospital waste by electrocoagulation. Science of the Total Environment, 443, 351–357.

    Article  CAS  Google Scholar 

  • Benotti, M. J., Trenholm, R. A., Vanderford, B. J., Holady, J. C., Stanford, B. D., & Snyder, S. A. (2009). Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environmental Science and Technology, 43, 597–603.

    Article  CAS  Google Scholar 

  • Bruker, S2 PICOFOX TXRF (2011). Spectrometer for element analysis. User manual. Berlin.

  • Carlucci, G. (1998). Analysis of fluoroquinolones in biological fluids by high-performance liquid chromatography. Journal of Chromatography A, 812, 343–367.

    Article  CAS  Google Scholar 

  • Chen, G. (2004). Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 38, 11–41.

    Article  Google Scholar 

  • De Bel, E., Dewulf, J., De Witte, B., Langenhove, H. V., & Janssen, C. (2009). Influence of pH on the sonolysis of ciprofloxacin: biodegradability, ecotoxicity and antibiotic activity of its degradation products. Chemosphere, 77, 291–295.

    Article  Google Scholar 

  • De Witte, B., Langenhove, H. V., Demeestere, K., Saerens, K., Wispelaere, P., & Dewulf, J. (2010). Ciprofloxacin ozonation in hospital wastewater treatment plant effluent: effect of pH and H2O2. Chemosphere, 78, 1142–1147.

    Article  Google Scholar 

  • Drogui, P., Asselin, M., Brar, S. K., Benmoussa, H., & Blais, J. F. (2008). Electrochemical removal of pollutants from agro-industry wastewaters. Separation and Purification Technology, 61, 301–310.

    Article  CAS  Google Scholar 

  • Espinoza-Quiñones, F. R., Fornari, M. M. T., Módenes, A. N., Palácio, S. M., Silva, F. G., Szymanski, N., Kroumov, A. D., & Trigueros, D. E. G. (2009). Pollutant removal from tannery effluent by electrocoagulation. Chemical Engineering Journal, 151, 59–65.

    Article  Google Scholar 

  • Espinoza-Quiñones, F.R., Módenes, A.N., Pauli, A.R., & Palácio, S.M. (2015). Analysis of trace elements in groundwater using ICP-OES and TXRF techniques and its compliance with Brazilian protection standards. Water Air & Soil Pollution, 226, article 32.

  • Gad-Allah, T. A., Ali, M. E. M., & Badawy, M. I. (2011). Photocatalytic oxidation of ciprofloxacin under simulated sunlight. Journal of Hazardous Materials, 186, 751–755.

    Article  CAS  Google Scholar 

  • González-Pleiter, M., Gonzalo, S., Rodea-Palomares, I., Leganés, F., Rosal, R., Marco, E., & Fernández-Piñas, F. (2013). Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: implications for environmental risk assessment. Water Research, 47, 2050–2064.

    Article  Google Scholar 

  • Hamilton, M. A., Russo, R. C., & Thurston, R. V. (1977). Trimmed Spearman Karber statistical method for estimating median lethal concentration in toxicity bioassays. Environmental Science & Technology, 11, 714–719.

  • Herrera, A. V., Hernandez-Borges, J., Borges-Miquel, T. M., & Rodriguez-Delgado, M. A. (2010). Dispersive liquid–liquid microextraction combined with nonaqueous capillary electrophoresis for the determination of fluoroquinolone antibiotics in waters. Electrophoresis, 31, 3457–3465.

    Article  Google Scholar 

  • Holt, P. K., Barton, G. W., & Mitchell, C. A. (2005). The future for electrocoagulation as a localized water treatment technology. Chemosphere, 59, 355–367.

    Article  CAS  Google Scholar 

  • Ilhan, F., Kurt, U., Apaydin, O., & Gonullu, M. T. (2008). Treatment of leachate by electrocoagulation using aluminum and iron electrodes. Journal of Hazardous Materials, 154, 381–389.

    Article  CAS  Google Scholar 

  • Jalil, M. E. R., Baschini, M., & Sapag, K. (2015). Influence of pH and antibiotic solubility on the removal of ciprofloxacin from aqueous media using montmorillonite. Applied Clay Science, 114, 69–76.

    Article  Google Scholar 

  • Jiang, L., Hu, X., Zhang, H., Sheng, D., & Yin, D. (2013). Prevalence of antibiotic resistance genes and their relationship with antibiotics on the Huangpu River and the drinking water sources, Shanghai, China. The Science of the Total Environment, 458–460, 267–272.

    Article  Google Scholar 

  • Kamaraj, R., & Vasudevan, S. (2015). Evaluation of electrocoagulation process for the removal of strontium and cesium from aqueous solution. Chemical Engineering Research and Design, 93, 522–530.

    Article  CAS  Google Scholar 

  • Kamaraj, R., & Vasudevan, S. (2016a). Facile one-pot synthesis of nano-zinc hydroxide by electro-dissolution of zinc as a sacrificial anode and the application for adsorption of Th4+, U4+, and Ce4+ from aqueous solution. Research on Chemical Intermediates, 42, 4077–4095.

    Article  CAS  Google Scholar 

  • Kamaraj, R., & Vasudevan, S. (2016b). Facile one-pot electrosynthesis of Al(OH)3—kinetics and equilibrium modeling for adsorption of 2,4,5-trichlorophenoxyacetic acid from aqueous solution. New Journal of Chemistry, 40, 2249–2258.

    Article  CAS  Google Scholar 

  • Kamaraj, R., Davidson, D. J., Sozhan, G., & Vasudevan, S. (2014). Adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) from water by in situ generated metal hydroxides using sacrificial anodes. Journal of the Taiwan Institute of Chemical Engineers, 45, 2943–2949.

    Article  CAS  Google Scholar 

  • Kamaraj, R., Davidson, D. J., Sozhan, G., & Vasudevan, S. (2015). Adsorption of herbicide 2-(2,4-dichlorophenoxy) propanoic acid by electrochemically generated aluminum hydroxides: an alternative to chemical dosing. RSC Advances, 5, 39799–39809.

    Article  CAS  Google Scholar 

  • Kamaraj, R., Pandiarajan, A., Jayakiruba, S., Naushad, M., & Vasudevan, S. (2016). Kinetics, thermodynamics and isotherm modeling for removal of nitrate from liquids by facile one-pot electrosynthesized nano zinc hydroxide. Journal of Molecular Liquids, 215, 204–211.

    Article  CAS  Google Scholar 

  • Khandegar, V., & Saroha, A. K. (2013). Electrocoagulation for the treatment of textile industry effluent—a review. Journal of Environmental Management, 128, 949–963.

    Article  CAS  Google Scholar 

  • Kummerer, K. (2009). Antibiotics in the aquatic environment—a review—part I. Chemosphere, 75, 417–434.

    Article  Google Scholar 

  • Lupo, A., Coyne, S., & Berendonk, T. U. (2012). Origin and evolution of antibiotic resistance: the common mechanisms of emergence and spread in the water bodies. Frontiers in Microbiology, 3, 1–13.

    Article  Google Scholar 

  • Manenti, D. R., Módenes, A. N., Soares, P. A., Espinoza-Quiñones, F. R., Boaventura, R. A. R., Bergamasco, R., & Vilar, V. J. P. (2014). Assessment of a multistage system based on electrocoagulation, solar photo-Fenton and biological oxidation processes for real textile wastewater treatment. Chemical Engineering Journal, 252, 120–130.

    Article  CAS  Google Scholar 

  • Martinez, J. L. (2009). Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution, 157, 2893–2902.

    Article  CAS  Google Scholar 

  • Marx, C., Gunther, N., Schubert, S., Oertel, R., Ahnert, M., Krebs, P., & Kuehn, V. (2015). Mass flow of antibiotics in a wastewater treatment plant focusing on removal variation due to operational parameters. The Science of the Total Environment, 538, 779–788.

    Article  CAS  Google Scholar 

  • Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., Nichols, D. E., & Mclaughlin, J. L. (1982). Brine shrimp: a convenient general bioassay for active plant constituents. Journal of Medicinal Plant Research, 45, 35–36.

    Article  Google Scholar 

  • Michael, I., Rizzo, L., Mcardell, C. S., Manaia, C. M., Merlin, C., Schwartz, T., Dagot, C., & Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Research, 47, 957–995.

    Article  CAS  Google Scholar 

  • Mollah, M. Y. A., Morkovsky, P., Gomes, J. A. G., Kesmez, M., Pargad, J., & Cocke, D. L. (2004). Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials, 114(1–3), 199–210.

    Article  CAS  Google Scholar 

  • Montgomery, D. C. (2008). Design and analysis of experiments (7th ed.). New York: Wiley. 656 pp.

    Google Scholar 

  • NCCLS (2003). Performance standards for antimicrobial disk susceptibility tests; approved standard—eighth edition. NCCLS document M2-A8 (ISBN 1-56238-485-6). NCCLS, Wayne, Pennsylvania, USA.

  • Ouaissa, Y. A., Chabani, M., Amrane, A., & Bensmaili, A. (2014). Removal of tetracycline by electrocoagulation: kinetic and isotherm modeling through adsorption. Journal of Environmental Chemical Engineering, 2, 177–184.

    Article  CAS  Google Scholar 

  • Padhye, L. P., Yao, H., Kung’u, F. T., & Huang, C.-H. (2014). Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant. Water Research, 51, 266–276.

    Article  CAS  Google Scholar 

  • Perini, J. A. L., Moya, M. P., & Nogueira, R. F. P. (2013). Photo-Fenton degradation kinetics of low ciprofloxacin concentration using different iron sources and pH. Journal of Photochemistry and Photobiology A: Chemistry, 259, 53–58.

    Article  CAS  Google Scholar 

  • Rodriguez, J., Stopié, S., Krause, G., & Friedrich, B. (2007). Feasibility assessment of electrocoagulation towards a new sustainable wastewater treatment. Environmental Science and Pollution Research, 14(7), 477–482.

    Article  CAS  Google Scholar 

  • Rodriguez-Mozaz, S., Chamorro, S., Marti, E., Huerta, B., Gros, M., Sanchez-Melsio, A., Borrego, C. M., Barcelo, D., & Balcazar, J. L. (2015). Occurrence of antibiotics and antibiotic resistance genes in the hospital and urban wastewaters and their impact on the receiving river. Water Research, 69, 234–242.

    Article  CAS  Google Scholar 

  • Sturini, M., Speltini, A., Maraschi, F., Pretali, L., Profumo, A., Fasani, E., Albini, A., Migliavacca, R., & Nucleo, E. (2012). Photodegradation of fluoroquinolones in surface water and antimicrobial activity of the photoproducts. Water Research, 46, 5575–5582.

    Article  CAS  Google Scholar 

  • Vadja, A. M., Barber, L. B., Gray, J. L., Lopez, E. M., Bolden, A. M., Schoenfuss, H. L., & Norris, D. O. (2011). Demasculinization of male fish by wastewater treatment plant effluent. Aquatic Toxicology, 103, 213–221.

    Article  Google Scholar 

  • Vasconcelos, T. G., Kummeres, K., Henriques, D. M., & Martins, A. F. (2009). Ciprofloxacin in hospital effluent: degradation by ozone and photoprocesses. Journal of Hazardous Materials, 169, 1154–1158.

    Article  CAS  Google Scholar 

  • Vasudevan, S., & Lakshmi, J. (2012). Electrochemical removal of boron from water: adsorption and thermodynamic studies. Canadian Journal of Chemical Engineering, 90, 1017–1026.

    Article  CAS  Google Scholar 

  • Vasudevan, S., & Oturan, M. A. (2014). Electrochemistry: as cause and cure in water pollution—an overview. Environmental Chemistry Letters, 12, 97–108.

    Article  CAS  Google Scholar 

  • Vasudevan, S., Sozhan, G., Ravichandran, S., Jayaraj, J., Lakshmi, J., & Sheela, S. M. (2008). Studies on the removal of phosphate from drinking water by electrocoagulation process. Industrial & Engineering Chemistry Research, 47, 2018–2023.

    Article  CAS  Google Scholar 

  • Vasudevan, S., Jayaraj, J., Lakshmi, J., & Sozhan, G. (2009a). Removal of iron from drinking water by electrocoagulation: adsorption and kinetics studies. Korean Journal of Chemical Engineering, 26, 1058–1064.

    Article  CAS  Google Scholar 

  • Vasudevan, S., Lakshmi, J., & Sozhan, G. (2009b). Optimization of the process parameters for the removal of phosphate from drinking water by electrocoagulation. Desalination and Water Treatment, 12, 407–414.

    Article  CAS  Google Scholar 

  • Vasudevan, S., Lakshmi, J., & Sozhan, G. (2011). Studies on the Al–Zn–In-alloy as anode material for the removal of chromium from drinking water in electrocoagulation process. Desalination, 275, 260–268.

    Article  CAS  Google Scholar 

  • Vasudevan, S., Lakshmi, J., & Sozhan, G. (2013). Electrochemically assisted coagulation for the removal of boron from water using zinc anode. Desalination, 310, 122–129.

    Article  CAS  Google Scholar 

  • Woodling, J. D., Lopez, E. M., Maldonado, T. A., Norris, D. O., & Vadja, A. M. (2006). Intersex and other reproductive disruption of fish in wastewater effluent dominated Colorado streams. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 144, 10–15.

    Google Scholar 

  • Xu, X., Liu, L., Jia, Z., & Shu, Y. (2015). Determination of enrofloxacin and ciprofloxacin in foods of animal origin by capillary electrophoresis with field amplified sample stacking-sweeping technique. Food Chemistry, 176, 219–225.

    Article  CAS  Google Scholar 

  • Zhang, X., Dong, L. L., Cai, K., & Li, R. P. (2013). A routine method for simultaneous determination of three classes of antibiotics in aquaculture water by SPE-RPLC-UV. Advanced in Material Research, 726, 1253–1259.

    Article  Google Scholar 

  • Zhang, X., Li, R., Jia, M., Wang, S., Huang, Y., & Chen, C. (2015). Degradation of ciprofloxacin in aqueous bismuth oxybromide (BiOBr) suspensions under visible light irradiation: a direct hole oxidation pathway. Chemical Engineering Journal, 274, 290–297.

    Article  CAS  Google Scholar 

  • Zhuo, J. J., Ying, G. G., Liu, S., Zhao, J. L., Chen, F., Zhang, R. Q., Peng, F. Q., & Zhang, Q. Q. (2012). Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography–electrospray ionization tandem mass spectrometry. Journal of Chromatography A, 1244, 123–138.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Coordination for the Improvement of Higher Education Personnel (CAPES), National Council for Scientific and Technological Development (CNPq), and Araucaria Foundation for the financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando R. Espinoza-Quiñones.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espinoza-Quiñones, F.R., de Souza, A.R.C., Módenes, A.N. et al. Removal Performance, Antibacterial Effects, and Toxicity Assessment of Ciprofloxacin Treated by the Electrocoagulation Process. Water Air Soil Pollut 227, 460 (2016). https://doi.org/10.1007/s11270-016-3165-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3165-8

Keywords

Navigation