Skip to main content
Log in

Assessment of the Fate of Escherichia coli in Different Stages of Wastewater Treatment Plants

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Seven full-scale wastewater treatment plants were investigated to highlight the effectiveness of each treatment stage on removing Escherichia coli. The primary sedimentation achieved an average E. coli removal efficiency of 30.5% which was much lower than the suspended solids (58%), thus, revealing the absence of a linear relationship between the two parameters. Biological processes proved to be very important in the removal of E. coli through adsorption inside the sludge flocs and complex decay (mortality). In biological processes with a long retention time, such as activated sludge denitrification-nitrification, the decay was very important, whereas in the more traditional activated sludge process, without nitrification, the contribution of adsorption and mortality was quite balanced. Overall, the mechanical-biological treatment achieved a removal efficiency of 91.8–96.5% depending on the process. Additional removal can be achieved by disinfection. The effectiveness of E. coli removal with sodium hypochlorite was strictly depended on the product of residual chlorine (C R) with the contact time (t). The experimental curve fitted the Collins model well, with a standard deviation of less than 7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bautista-Toledo, M. I., Espinosa-Iglesias, D., Carrasco-Marin, F., Pérez-Cardenas, A. F., & Maldonado, F. I. (2015). Influence of the physicochemical properties of inorganic supports on the activity of immobilized bacteria for water denitrification. Journal of Environmental Management, 156, 81–88. doi:10.1016/j.jenvman.2015.03.031.

    Article  CAS  Google Scholar 

  • Capodaglio, A.G., Hlavínek, P., & Raboni, M. (2015). Physico-chemical technologies for nitrogen removal from wastewaters: a review. Revista Ambiente & Agua, 481–498 (2015). doi:10.4136/ambi-agua.1618.

  • Carlos, C., Alexandrino, F., Stoppe, N. C., Sato, M. I. Z., & Ottoboni, L. M. M. (2012). Use of Escherichia coli BOX-PCR fingerprints to identify sources of fecal contamination of water bodies in the State of São Paulo, Brazil. Journal of Environmental Management, 93, 38–43. doi:10.1016/j.jenvman.2011.08.012.

    Article  CAS  Google Scholar 

  • Cavallini, G. S., de Campos, S. X., de Souza, J. B., & Vidal, C. M. D. (2013). Evaluation of the physical-chemical characteristics of wastewater after disinfection with peracetic acid. Water, Air, and Soil Pollution, 224(10), 1–11. doi:10.1007/s11270-013-1752-5.

    Article  CAS  Google Scholar 

  • Copelli, S., Raboni, M., & Urbini, G. (2015). Water pollution: biological oxidation and natural control techniques. In J. Reedijk (Ed.), Reference module in chemistry, molecular sciences and chemical engineering (pp. 1–28). Elsevier. doi:10.1016/B978-0-12-409547-2.11419-2.

  • EPA Victoria (2002). Guidelines for environmental management—disinfection of treated wastewater. Publication 730, September. ISBN 0 7306 7623 4.

  • Frigon, D., Biswal, B. K., Mazza, A., Masson, L., & Gehr, R. (2013). Biological and physicochemical wastewater treatment processes reduce the prevalence of virulent Escherichia coli. Applied and Environmental Microbiology, 79(3), 835–844. doi:10.1128/AEM.02789-12.

    Article  CAS  Google Scholar 

  • George, I., Crop, P., & Servais, P. (2002). Fecal coliform removal in wastewater treatment plants studied by plate counts and enzymatic methods. Water Research, 36, 2607–2617.

    Article  CAS  Google Scholar 

  • Hartman, L. J., Grimsley, G. A., Martin, A. E., & Register, K. M. (2006). A long-term study comparing membrane filtration with Colilert® defined substrates in detecting fecal coliforms and Escherichia coli in natural waters. Journal of Environmental Management, 80, 191–197. doi:10.1016/j.jenvman.2005.08.024.

    Article  Google Scholar 

  • Hwang, S.W. (2012). Optimizing Pathogen Destruction during Urban Wastewater Treatment to Provide for More Sustainable Effluent Disinfection. Proceedings of 1st Civil and Environmental Engineering Student Conference, Imperial College London, 25–26 June.

  • IRSA-Institute for Water Research of the National Research Council, APAT-Agency for the protection of the Environment and Technical Services (2003). Analytical methods for water-Report 29/2003, Rome, Italy.

  • Italian Parliament (2006). Legislative Decree No. 152 approving the Code on the Environment. Official Gazette of the Italian Republic No. 88, 14th April 2006.

  • Kazmi, A. A., Tyagi, V. K., Trivedi, R. C., & Kumar, A. (2008). Coliforms removal in full-scale activated sludge plants in India. Journal of Environmental Management, 87, 415–419. doi:10.1016/j.jenvman.2007.01.017.

    Article  CAS  Google Scholar 

  • Landa-Cansigno, O., Durán-Álvarez, J. C., & Jiménez-Cisneros, B. (2013). Retention of Escherichia coli, Giardia lamblia cysts and Ascaris lumbricoides eggs in agricultural soils irrigated by untreated wastewater. Journal of Environmental Management, 128, 22–29. doi:10.1016/j.jenvman.2013.04.049.

    Article  CAS  Google Scholar 

  • Massana, A. C., Gómez-Doñate, M., Sánchez, D., Belanche-Muñoz, L. A., Muniesa, M., & Blanch, A. R. (2015). Predicting fecal sources in waters with diverse pollution loads using general and molecular host-specific indicators and applying machine learning methods. Journal of Environmental Management, 151, 317–325. doi:10.1016/j.jenvman.2015.01.002.

    Article  Google Scholar 

  • Orruño, M., Garaizabal, I., Bravo, Z., Parada, C., Barcina, I., & Arana, I. (2014). Mechanisms involved in Escherichia coli and Serratia marcescens removal during activated sludge wastewater treatment. MicrobiologyOpen, 3(5), 657–667. doi:10.1002/mbo3.196.

    Article  Google Scholar 

  • Papa, M., Bertanza, G., & Abbà, A. (2016). Reuse of wastewater: a feasible option, or not? A decision support system can solve the doubt. Desalination and Water Treatment, 57(19), 8670–8682. doi:10.1080/19443994.2015.1029532.

    Article  Google Scholar 

  • Pignata, C., Fea, E., Rovere, R., Degan, R., Lorenzi, E., de Ceglia, M., Schilirò, T., & Gilli, G. (2012). Chlorination in a wastewater treatment plant: acute toxicity effects of the effluent and of the recipient water body. Environmental Monitoring and Assessment, 184, 2091–2103. doi:10.1007/s10661-011-2102-y.

    Article  CAS  Google Scholar 

  • Raboni, M., Torretta, V., Viotti, P., & Urbini, G. (2013a). Experimental plant for the physical-chemical treatment of groundwater polluted by Municipal Solid Waste (MSW) leachate, with ammonia recovery. Revista Ambiente & Agua, 8, 22–32. doi:10.4136/ambi-agua.1250.

    Google Scholar 

  • Raboni, M., Torretta, V., & Urbini, G. (2013b). Influence of strong diurnal variations in sewage quality on the performance of biological denitrification in small community wastewater treatment plants (WWTPs). Sustainability, 5, 3679–3689. doi:10.3390/su5093679.

    Article  Google Scholar 

  • Raboni, M., Torretta, V., Viotti, P., & Urbini, G. (2014a). Pilot experimentation with complete mixing anoxic reactors to improve sewage denitrification in treatment plants in small communities. Sustainability., 6, 112–122. doi:10.3390/su6010112.

    Article  Google Scholar 

  • Raboni, M., Torretta, V., Viotti, P., & Urbini, G. (2014b). Calculating specific denitrification rates in pre-denitrification by assessing the influence of dissolved oxygen, sludge loading and the mixed-liquor recycle. Environmental Technology, 35, 2582–2588. doi:10.1080/09593330.2014.913690.

    Article  CAS  Google Scholar 

  • Raboni, M., Gavasci, R., & Viotti, P. (2015). Influence of denitrification reactor retention time distribution (RTD) on dissolved oxygen control and nitrogen removal efficiency. Water Science and Technology, 72, 45–51. doi:10.2166/wst.2015.188.

    Article  CAS  Google Scholar 

  • Semenov, A. V., van Overbeek, L., Termorshuizen, A. J., & van Bruggen, A. H. C. (2011). Influence of aerobic and anaerobic conditions on survival of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in Luria–Bertani broth, farm-yard manure and slurry. Journal of Environmental Management, 92, 780–787. doi:10.1016/j.jenvman.2010.10.031.

    Article  CAS  Google Scholar 

  • Soller, J., Embrey, M., Tuhela, L., Ichida, A., & Rosen, J. (2010). Risk-based evaluation of Escherichia coli monitoring data from undisinfected drinking water. Journal of Environmental Management, 291, 2329–2335. doi:10.1016/j.jenvman.2010.06.017.

    Article  Google Scholar 

  • Sorlini, S., Collivignarelli, M. C., & Canato, M. (2015a). Effectiveness in chlorite removal by two activated carbons under different working conditions: a laboratory study. Journal of Water Supply: Research and Technology-AQUA, 64(4), 450–461. doi:10.2166/aqua.2015.132.

    Article  Google Scholar 

  • Sorlini, S., Collivignarelli, M. C., Castagnola, F., Crotti, B. M., & Raboni, M. (2015b). Methodological approach for the optimization of drinking water treatment plants’ operation: a case study. Water Science and Technology, 71(4), 597–604. doi:10.2166/wst.2014.503.

    Article  CAS  Google Scholar 

  • Sorlini, S., Biasibetti, M., Collivignarelli, M. C., & Crotti, B. M. (2015c). Reducing the chlorine dioxide demand in final disinfection of drinking water treatment plants using activated carbon. Environmental Technology, 36(12), 1499–1509. doi:10.1080/09593330.2014.994043.

    Article  CAS  Google Scholar 

  • Sorlini, S., Biasibetti, M., Gialdini, F., & Collivignarelli, M. C. (2016). How can drinking water treatments influence chlorine dioxide consumption and by-product formation in final disinfection? Water Science and Technology: Water Supply, 16(2), 333–346. doi:10.2166/ws.2015.142.

    Google Scholar 

  • Taegyu, K., & Jong-In, H. (2013). Fast detection and quantification of Escherichia coli using the base principle of the microbial fuel cell. Journal of Environmental Management, 130, 267–275. doi:10.1016/j.jenvman.2013.08.051.

    Article  Google Scholar 

  • Tchobanoglous, G., Burton, F. L., & Stensel, H. D. (2003). Wastewater engineering—treatment and reuse (4th ed.). New York: Mc Graw Hill.

    Google Scholar 

  • Torretta, V., & Katsoyiannis, A. (2013). Occurrence of polycyclic aromatic hydrocarbons in sludges from different stages of a wastewater treatment plant in Italy. Environmental Technology, 34(7), 937–943. doi:10.1080/09593330.2012.722693.

    Article  CAS  Google Scholar 

  • U.S. Food & Drug Administration (2012). Bad Bug Book—Handbook of Foodborne Pathogenic Microorganisms and Natural Toxins (2nd Ed.), Center for Food Safety and Applied Nutrition (CFSAN) of the Food and Drug Administration (FDA), U.S. Department of Health and Human Services.

  • US-EPA, United States Environmental Protection Agency (2010). Nutrient Control Design Manual. Report EPA/600/R‐10/100. Office of Research and Development / National Risk Management Research Laboratory, Cincinnati, USA.

  • van der Drift, C., van Seggellen, E., Stumm, C., Hol, W., & Tuinte, J. (1977). Removal of Escherichia coli in wastewater by activated sludge. Applied and Environmental Microbiology, 34(9), 315–319.

    Google Scholar 

  • Viotti, P., Collivignarelli, M. C., Martorelli, E., & Raboni, M. (2015). Oxygen control and improved denitrification efficiency by dosing ferrous ions in the anoxic reactor. Desalination and Water Treatment. doi:10.1080/19443994.2015.1089200.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Torretta.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raboni, M., Gavasci, R. & Torretta, V. Assessment of the Fate of Escherichia coli in Different Stages of Wastewater Treatment Plants. Water Air Soil Pollut 227, 455 (2016). https://doi.org/10.1007/s11270-016-3157-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3157-8

Keywords

Navigation