Skip to main content
Log in

Comparative Study of Photocatalytic Fuel Cell for Degradation of Methylene Blue under Sunlight and Ultra-Violet Light Irradiation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Photocatalytic fuel cell is considered as a sustainable wastewater treatment system which could degrade organic pollutants and generate electricity simultaneously. In this study, a single-chambered photocatalytic fuel cell based on immobilized ZnO/Zn photoanode was evaluated under sunlight and UV light irradiation, respectively. Methylene blue was used as the dye pollutant in the photocatalytic fuel cell. The fabricated ZnO/Zn photoanode was characterized using scanning electron microscopy and X-ray diffraction. Significant difference in degradation efficiency of methylene blue was observed under UV and sunlight irradiation, respectively. Results showed that the decolorization efficiency and electricity generation of methylene blue in PFC and photolysis were higher under sunlight irradiation compared to those of the UV light irradiation. The decolorization trend of methylene blue was unstable under photolysis using UV light irradiation. Under sunlight irradiation, about 85% of methylene blue was decolorized by PFC, but only 35% of decolorization was observed under UV light irradiation. The maximum power density of the PFC under sunlight irradiation (0.0032 mW/cm2) was almost two times of that under the UV light irradiation (0.0017 mW/cm2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arun Prasad, A. S., & Bhaskara Rao, K. V. (2010). Physico Chemical Characterization of Textile Effluent and Screening for Dye Decolorizing Bacteria. Global Journal of Biotechnology & Biochemistry, 5(2), 80–86.

    CAS  Google Scholar 

  • Bestani, B., Benderdouche, N., Benstaali, B., Belhakem, M., & Addou, A. (2008). Methylene blue and iodine adsorption onto an activated desert plant. Bioresource Technology, 99, 8441–8444.

    Article  CAS  Google Scholar 

  • Chen, Q., Li, J., Li, X., Huang, K., Zhou, B., Cai, W., & Shangguan, W. (2012). Visible-light responsive photocatalytic fuel cell based on WO3/W photoanode and Cu2O/Cu photocathode for simultaneous wastewater treatment and electricity generation. Environmental Science and Technology, 46, 11451–11458.

    Article  CAS  Google Scholar 

  • Chen, Q., Bai, J., Li, J., Huang, K., Li, X., Zhou, B., & Cai, W. (2014). Aerated visible-light responsive photocatalytic fuel cell for wastewater treatment with producing sustainable electricity in neutral solution. Chemical Engineering Journal, 252, 89–94.

    Article  CAS  Google Scholar 

  • Dos Santos, A. B., Cervantes, F. J., & Van Lier, J. B. (2007). Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresource Technology, 98, 2369–2385.

    Article  Google Scholar 

  • El Qada, E. N., Allen, S. J., & Walker, G. M. (2008). Adsorption of basic dyes from aqueous solution onto activated carbons. Chemical Engineering Journal, 135, 174–184.

    Article  Google Scholar 

  • Fatin, S. O., Lim, H. N., Tan, W. T., & Huang, N. M. (2012). Comparison of photocatalytic activity and cyclic voltammetry of zinc oxide and titanium dioxide nanoparticles toward degradation of methylene blue. International Journal of Electrochemical Science, 7, 9074–9084.

    CAS  Google Scholar 

  • Guo, Y., Yang, S., Fu, W., Qi, J., Li, R., Wang, Z., & Xu, H. (2003). Adsorption of malachite green on micro- and mesoporous rice husk-based active carbon. Dyes and Pigments, 56, 219–229.

    Article  CAS  Google Scholar 

  • Harir, M., Gaspar, A., Kanawati, B., Fekete, A., Frommberger, M., Martens, D., Kettrup, A., EI Azzouzi, M., & Schmitt-Kopplin, P. (2008). Photocatalytic reactions of imazamox at TiO2, H2O2 and TiO2/H2O2 in water interfaces: kinetic and photoproducts study. Applied Catalysis B: Environmental, 84, 524–532.

    Article  CAS  Google Scholar 

  • Herrmann, J. M., Disdier, J., Pichat, P., Malato, S., & Blanco, J. (1998). TiO2-based solar photocatalytic detoxification of water containing organic pollutants. Case studies of 2,4-dichlorophenoxyaceticacid (2,4-D) and of benzofuran. Applied Catalysis B: Environmental, 17, 15–23.

    Article  CAS  Google Scholar 

  • Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., & Herrmann, J. M. (2001). Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental, 31, 145–157.

    Article  CAS  Google Scholar 

  • Kannan, N., & Sundaram, M. M. (2001). Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. Dyes and Pigments, 51, 25–40.

    Article  CAS  Google Scholar 

  • Lee, S. K., & Mills, A. (2003). Novel photochemistry of leuco-Methylene Blue. Chemical Communications, 18, 2366–2367.

    Article  Google Scholar 

  • Lee H, Park SH, Kim BH, Kim SJ, Kim SC, Seo SG, Jung SC (2012) Contribution of dissolved oxygen to methylene blue decomposition by hybrid advanced oxidation processes system. International Journal of Photoenergy.

  • Lee, S. L., Ho, L. N., Ong, S. A., Wong, Y. S., Voon, C. H., Khalik, W. F., Yusoff, N. A., & Nordin, N. (2016). Enhanced electricity generation and degradation of the azo dye Reactive Green 19 in a photocatalytic fuel cell using ZnO/Zn as the photoanode. Journal of Cleaner Production, 127, 579–584. doi:10.1016/j.jclepro.2016.03.169.

    Article  CAS  Google Scholar 

  • Lee, S. L., Ho, L. N., Ong, S. A., Wong, Y. S., Voon, C. H., Khalik, W. F., Yusoff, N. A., & Nordin, N. (2017). A highly efficient immobilized ZnO/Zn photoanode for degradation of azo dye Reactive Green 19 in a photocatalytic fuel cell. Chemosphere, 166, 118–125. doi:10.1016/j.chemosphere.2016.09.082.

    Article  CAS  Google Scholar 

  • Li, J., Li, J., Chen, Q., Bai, J., & Zhou, B. (2013a). Converting hazardous organics into clean energy using a solar responsive dual photoelectrode photocatalytic fuel cell. Journal of Hazardous Materials, 262, 304–310.

    Article  CAS  Google Scholar 

  • Li, K., Xu, Y., He, Y., Yang, C., Wang, Y., & Jia, J. (2013b). Photocatalytic fuel cell (PFC) and dye self-photosensitization photocatalytic fuel cell (DSPFC) with BiOCl/Ti photoanode under UV and visible light irradiation. Environmental Science and Technology, 47, 3490–3497.

    CAS  Google Scholar 

  • Lupan, O., Chow, L., Chai, G., & Heinrich, H. (2008). Fabrication and characterization of Zn–ZnO core–shell microspheres from nanorods. Chemical Physics Letters, 465, 249–253.

    Article  CAS  Google Scholar 

  • Mills, A., & Wang, J. (1999). Photobleaching of methylene blue sensitised by TiO2: an ambiguous system? Journal of Photochemistry and Photobiology A: Chemistry, 127, 123–134.

    Article  CAS  Google Scholar 

  • Nadeem, M. A., Ajmal, A., Malik, R. N., Majeed, I., & Idriss, H. (2014). Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. Royal Society of Chemistry Advances, 4, 37003–37026.

    Google Scholar 

  • Obata, H. (1961). Photoreduction of methylene blue by visible light in the aqueous solution containing certain kinds of inorganic salts. II. Photobleached product. Bulletin of the Chemical Society of Japan, 34, 1057–1063.

    Article  CAS  Google Scholar 

  • Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: a review. Journal of Hazardous Materials, 177, 70–80.

    Article  CAS  Google Scholar 

  • Sakthivel, S., Neppolian, B., Shankar, M. V., Arabindoo, B., Palanichamy, M., & Murugesan, V. (2003). Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Solar Energy Materials and Solar Cells, 77, 65–82.

    Article  CAS  Google Scholar 

  • Snehalatha, T., Rajanna, K. C., & Saiprakash, P. K. (1997). Methylene Blue–Ascorbic Acid: An Undergraduate Experiment in Kinetics. Journal of Chemical Education, 74, 228.

    Article  CAS  Google Scholar 

  • Soltani, T., & Entezari, M. H. (2013). Photolysis and photocatalysis of methylene blue by ferrite bismuth nanoparticles under sunlight irradiation. Journal of Molecular Catalysis A: Chemical, 377, 197–203.

    Article  CAS  Google Scholar 

  • Wang, B., Zhang, H., Lu, X. Y., Xuan, J., & Leung, M. K. H. (2014). Solar photocatalytic fuel cell using CdS–TiO2 photoanode and air-breathing cathode for wastewater treatment and simultaneous electricity production. Chemical Engineering Journal, 253, 174–182.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of Incentive Journal Grant provided by University Malaysia Perlis (UniMAP), Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Ngee Ho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SL., Ho, LN., Ong, SA. et al. Comparative Study of Photocatalytic Fuel Cell for Degradation of Methylene Blue under Sunlight and Ultra-Violet Light Irradiation. Water Air Soil Pollut 227, 445 (2016). https://doi.org/10.1007/s11270-016-3148-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3148-9

Keywords

Navigation