Skip to main content
Log in

The First Experience of Studying the Fraction Distribution of Heavy Metals in Sediments of the Zeya River Basin (Far East, Russia)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Research was carried out on the granulometric, mineral composition and fractional distribution of some elements in surface sediments of the Zeya River basin (Far East, Russia). The order of sediments’ pollution by heavy metals due to man-caused impact on the Zeya River’s ecosystem was determined. The compound forms of heavy metals in sediments were studied. It presented the most of the Fe, Ni, Cr, Mn, Co, Cu and Zn accumulated in bottom fraction; Pb and Cd—also in Fe and Mn hydroxides and bottom fractions. On average, 56% Pb, 83% Cd, 27–37% Cu, Co and Zn (of total amount) are held in geochemical moving forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Albanese, S., Vivo, B. D., Lima, A., & Cicchella, D. (2007). Geochemical background and baseline values of toxic elements in stream sediments of Campania region (Italy). Journal of Geochemical Exploration, 93(1), 21–34.

    Article  CAS  Google Scholar 

  • Asadulin, E. E., Miroshnikov, A. Y., & Velichkin, V. I. (2013). Geochemical signature of bottom sediments in the mixing zones of Ob and Yenisei waters with Kara Sea water. Geochemistry International, 51(12), 1005–1018.

    Article  CAS  Google Scholar 

  • Bruks, R. R. (1982). Trace-element contamination. In J. O. M. Bokris (Ed.), Environmental chemistry (pp. 371–413). Moscow: Chemistry.

    Google Scholar 

  • Chester, R., & Huges, M. J. (1967). A chemical technique for separation of ferromanganese minerals and absorbed trace metals from pelagic sediments. Chemical Geology, 2(3), 249–262.

    Article  CAS  Google Scholar 

  • Clark, E. V., Odhiambo, B. K., & Ricker, M. C. (2014). Comparative analysis of metal concentrations and sediment accumulation rates in two Virginian reservoirs, USA: Lakes Moomaw and Pelham. Water, Air, & Soil Pollution, 225, 1860. doi:10.1007/s11270-013-1860-2.

    Article  Google Scholar 

  • Dauvalter, V. A. (2000). Assessment of toxicity of metals accumulated in bottom deposits of lakes. Water Resources, 27(4), 424–431.

    CAS  Google Scholar 

  • Dauvalter, V. A., & Kashulin, N. A. (2010). Chalcophile elements (Hg, Cd, Pb, As) in Lake Umbozero, Murmansk province. Water Resources, 37(4), 497–512.

    Article  CAS  Google Scholar 

  • Demina, L. L., Politova, N. V., & Levitan, M. A. (2006). Speciation of some heavy metals in bottom sediments of the Ob and Yenisei estuarine zones. Geochemistry International, 44(2), 182–195.

    Article  Google Scholar 

  • Ginsburg, A. I. (Ed.). (1970). Minerals and rocks of the USSR. Moscow: Thought. 439 pp.

    Google Scholar 

  • Gusev, M.N., & Pomiguev, J.V. (2007a). The peculiarities of formation of the lower Zey sediment discharge. Proceedings of the X International Symposium on River Sedimentation, Faculty of Geography MSU, Moscow, 5, 83–90.

  • Gusev, M. N., & Pomiguev, J. V. (2007a). River bed evolution of Zeya in a modern economy management. Geography and Natural Resources, 2, 113–117.

    Google Scholar 

  • Kitano, Y., & Fujiyoshi, R. (1980). Selective chemical leaching of cadmium, copper manganese and iron in marine sediments. Geochemical Journal, 14(3), 113–122.

    Article  CAS  Google Scholar 

  • Kot, F. S., Bakanov, K. G., & Goryachev, N. A. (2010). Mercury in bottom sediments of the Amur River, its flood-plain lakes and estuary, Eastern Siberia. Environmental Monitoring and Assessment, 168(1–4), 133–140.

    Article  CAS  Google Scholar 

  • Kot, F. S. (1998). Trace metals in bottom deposits of the Amur River and the mixing zones an the Sea of Okhotsk. Geochemistry International, 1, 102–107.

    Google Scholar 

  • Kulik, E. N., & Radomskaya, V. I. (2011). The study of modes of heavy metals occurrence in the brown forest soil under anthropogenic impact. Agricultural Research Magazine, 7, 12–15.

    Google Scholar 

  • Ladonin, D. V. (2002). The compounds of heavy metals in soils—issues and methods of studying. Eurasian Soil Science, 6, 682–692.

    Google Scholar 

  • Lesven, L., Lourino-Cabana, B., Billon, G., Recourt, P., Ouddane, B., Mikkelsen, O., & Boughriet, A. (2010). On metal diagenesis in contaminated sediments of the Deûle river (northern France). Applied Geochemistry, 25(9), 1361–1373.

    Article  CAS  Google Scholar 

  • Lopatko, A. S., Kandrashov, A. I., & Judina, I. M. (2005). Water composition of Zeya water reservoir after 30 years from the beginning of its filling. In S. E. Sirotskii (Ed.), Scientific basis for ecological monitoring the reservoirs: Druzhinin’s lectures (pp. 69–71). Khabarovsk: IWEP FEB RAS.

    Google Scholar 

  • Luoma, S. N. (1989). Can we determine the biological availability of sediment-bound trace elements? Hydrobiologia, 176(177), 379–396.

    Article  Google Scholar 

  • Luoma, S. N., & Bryan, G. W. (1981). A statistical assessment of the form of trace metals in oxidized estuarine sediments employing chemical extractants. Science of the Total Environment, 17, 165–196.

    Article  CAS  Google Scholar 

  • Miller, J. R., & Mackin, G. (2013). Concentrations, sources and potential ecological impacts of selected trace metals on aquatic biota within the Little Tennessee River basin, North Carolina. Water, Air, & Soil Pollution, 244, 1613–1637. doi:10.1007/s11270-013-1613-2.

    Article  Google Scholar 

  • Nakhshina, E. P. (1985). Heavy metals in system “water—bottom sediments” reservoirs: overview. Hydrobiological Journal, 21(2), 80–90.

    CAS  Google Scholar 

  • Nikol’skii, B. P. (Ed.). (1965). Chemical handbook. Chemistry: Moscow-Leningrad. 3, 233 pp.

    Google Scholar 

  • Papina, T. S. (2001). Transport and peculiarities of heavy metals distribution in the row: water—suspended substance—river ecosystems sludge. Analytical review. Novosibirsk: GPNTB SB RAS. 57 pp.

    Google Scholar 

  • Perelman, A. I., & Kasimov, N. S. (2000). Geochemistry of landscape. Moscow: Astraea. 610 pp.

    Google Scholar 

  • PND F 16.2.2: 2.3.71-2011. (2011). Quantitative chemical analysis of soils. Methodology of measuring the mass of metal fraction in sewage sludge, bottom deposits and plant samples by spectral methods. Moscow, 45 pp.

  • Ponizovskii, A. A., & Mironenko, E. V. (2001). Mechanisms of lead (II) absorption by soils. Eurasian Soil Science, 4, 418–429.

    Google Scholar 

  • Radomskaya, V. I., Radomskii, S. M., Piskunov, J. G., & Kuimova, N. G. (2005). Biogeochemistry of noble metals in waterways of the Amur River basin. Geoecology, Engineering Geology, Hydrogeology, Geocryology, 4, 317–322.

    Google Scholar 

  • Radomskii, S. M., Radomskaya, V. I., Gusev, M. N., & Matyugina, E. B. (2007). Basic physicochemical characteristics of the state of upper Amur surface water. Water Resources, 34(1), 60–69.

    Article  CAS  Google Scholar 

  • Sanders, L. M., Luiz-Silva, W., Machado, W., Sanders, C. J., Marotta, H., et al. (2013). Rare earth element and radionuclide distribution in surface sediments along an estuarine system affected by fertilizer industry contamination. Water, Air, & Soil Pollution, 224, 1742. doi:10.1007/s11270-013-1742-7.

    Article  Google Scholar 

  • Saet, Y. E., Revich, B. A., Yanin, E. P., Smirnova, R. S., Basharkevich, I. L., Onishchenko, T. L., Pavlova, L. N., Trefilova, N. Y., Achkasov, A. I., & Sarkisyan, S. S. (1990). Geochemistry of the environment (p. 335). Moscow: Nedra.

    Google Scholar 

  • Savenko, V. S. (2007). Chemical composition of sediment load carried by rivers. Geochemistry International, 45(8), 816–824.

    Article  Google Scholar 

  • Segura, R., Arancibia, V., Zúñiga, M. C., & Pastén, P. (2006). Distribution of cooper, zinc, lead and cadmium concentrations in stream sediments from the Mapocho River Santiago, Chile. Journal of Geochemical Exploration, 91(1–3), 71–80.

    Article  CAS  Google Scholar 

  • Sharma, C. M., Kang, S., Li, Q., Zhang, Q., Huang, J., Tripathee, L., Sharma, S., & Paudyal, R. (2015). Mercury and selected trace elements from a remote (Gosainkunda) and an urban (Phewa) Lake waters of Nepal. Water, Air, & Soil Pollution, 226, 6. doi:10.1007/s11270-014-2276-3.

    Article  Google Scholar 

  • Song, Y., Ji, J., Mao, C., Yang, Z., Yuan, X., Ayoko, G. A., & Frost, R. L. (2010). Heavy metal contamination in suspended solids of Changjiang River—environmental implications. Geoderma, 159(3–4), 286–295. doi:10.1016/j.geoderma.2010.07.020.

    Article  CAS  Google Scholar 

  • Sorokina, O. A., & Zarubina, N. V. (2011). Chemical composition of the bottom sediments in the middle reaches of the Amur River. Russian Journal of Pacific Geology, 5(5), 469–476.

    Article  Google Scholar 

  • Sorokina, O. A., & Zarubina, N. V. (2013). The content of chemical elements in alluvial soils and bottom sediments of the Urkan River (the Amur River basin). Eurasian Soil Science, 46(6), 644–653.

    Article  CAS  Google Scholar 

  • Sorokina, O. A., Gusev, M. N., & Zarubina, N. V. (2014). Distribution features of chemical elements in river bed of bottom deposits of the Zeya River. Geography and Natural Resources, 4, 81–88.

    Google Scholar 

  • Tsareva, S. A., Chesnokova, T. A., Grinevich, V. I., & Kostrov, V. V. (1999). The forms of metals being in the water and bottom deposits of Uvod water reservoir. Water Resources, 26(1), 71–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyudmila M. Pavlova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radomskaya, V.I., Radomskii, S.M., Pavlova, L.M. et al. The First Experience of Studying the Fraction Distribution of Heavy Metals in Sediments of the Zeya River Basin (Far East, Russia). Water Air Soil Pollut 227, 438 (2016). https://doi.org/10.1007/s11270-016-3145-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3145-z

Keywords

Navigation